scholarly journals In situ Resource Utilization and Reconfiguration of Soils Into Construction Materials for the Additive Manufacturing of Buildings

2020 ◽  
Vol 7 ◽  
Author(s):  
Aayushi Bajpayee ◽  
Mehdi Farahbakhsh ◽  
Umme Zakira ◽  
Aditi Pandey ◽  
Lena Abu Ennab ◽  
...  
2020 ◽  
Vol 174 ◽  
pp. 241-253 ◽  
Author(s):  
David Karl ◽  
Thomas Duminy ◽  
Pedro Lima ◽  
Franz Kamutzki ◽  
Albert Gili ◽  
...  

1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2021 ◽  
Vol 64 ◽  
pp. 972-981
Author(s):  
Daniel Kaczmarek ◽  
Daniel Walczyk ◽  
James Garofalo ◽  
Margaret Sobkowicz-Kline

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


2020 ◽  
Vol 25 (8) ◽  
pp. 679-689
Author(s):  
J. Raplee ◽  
J. Gockel ◽  
F. List ◽  
K. Carver ◽  
S. Foster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document