scholarly journals Accuracy of Intraocular Lens Power Calculation Formulas in Pediatric Cataract Patients: A Systematic Review and Meta-Analysis

2021 ◽  
Vol 8 ◽  
Author(s):  
Yueyang Zhong ◽  
Yibo Yu ◽  
Jinyu Li ◽  
Bing Lu ◽  
Su Li ◽  
...  

Background: Among the various intraocular lens (IOL) power calculation formulas available in clinical settings, which one can yield more accurate results is still inconclusive. We performed a meta-analysis to compare the accuracy of the IOL power calculation formulas used for pediatric cataract patients.Methods: Observational cohort studies published through April 2021 were systematically searched in PubMed, Web of Science, and EMBASE databases. For each included study, the mean differences of the mean prediction error and mean absolute prediction error (APE) were analyzed and compared using the random-effects model.Results: Twelve studies involving 1,647 eyes were enrolled in the meta-analysis, and five formulas were compared: Holladay 1, Holladay 2, Hoffer Q, SRK/T, and SRK II. Holladay 1 exhibited the smallest APE (0.97; 95% confidence interval [CI]: 0.92–1.03). For the patients with an axial length (AL) less than 22 mm, SRK/T showed a significantly smaller APE than SRK II (mean difference [MD]: −0.37; 95% CI: −0.63 to −0.12). For the patients younger than 24 months, SRK/T had a significantly smaller APE than Hoffer Q (MD: −0.28; 95% CI: −0.51 to −0.06). For the patients aged 24–60 months, SRK/T presented a significantly smaller APE than Holladay 2 (MD: −0.60; 95% CI: −0.93 to −0.26).Conclusion: Due to the rapid growth and high variability of pediatric eyes, the formulas for IOL calculation should be considered according to clinical parameters such as age and AL. The evidence obtained supported the accuracy and reliability of SRK/T under certain conditions.Systematic Review Registration: PROSPERO, identifier: INPLASY202190077.

2019 ◽  
Vol 34 (2) ◽  
Author(s):  
Sidra Anwar, Atif Mansoor Ahmad, Irum Abbas, Zyeima Arif

Purpose: To compare post-operative mean refractive error with SandersRetzlaff-Kraff/theoretical (SRK-T) and Holladay 1 formulae for intraocular lens (IOL) power calculation in cataract patients with longer axial lengths. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Ophthalmology, Shaikh Zayed Hospital Lahore from 01 January 2017 01 January, 2018. Material and Methods: A total of 80 patients were selected from Ophthalmology Outdoor of Shaikh Zayed Hospital Lahore. The patients were randomly divided into two groups of 40 each by lottery method. IOL power calculation was done in group A using SRK-T formula and in group B using Holladay1 formula after keratomery and A-scan. All patients underwent phacoemulsification with foldable lens implantation. Post-operative refractive error was measured after one month and mean error was calculated and compared between the two groups. Results: Eighty cases were included in the study with a mean age of 55.8 ± 6.2 years. The mean axial length was 25.63 ± 0.78mm, and the mean keratometric power was 43.68 ± 1.1 D. The mean post-operative refractive error in group A (SRK/T) was +0.36D ± 0.33D and in group B (Holladay 1) it was +0.68 ± 0.43. The Mean Error in group A was +0.37D ± 0.31D as compared to +0.69D ± 0.44D in group B. Conclusion: SRK/T formula is superior to Holladay 1 formula for cases having longer axial lengths. Key words: Phacoemulsification, intraocular lens power, longer axial length, biometry.


2021 ◽  
pp. 112067212199472
Author(s):  
Gabor Nemeth ◽  
Adam Kemeny-Beke ◽  
Laszlo Modis

Purpose: To assess the accuracy of the intraocular lens (IOL) power calculation based on three methods using artificial intelligence (AI) and one formula using no AI. Methods: During cataract surgery on 114 eyes, one type of IOL was implanted, calculated with the Hill-RBF 2.0 method. The theoretical postoperative refractions were calculated using the Kane and the Pearl-DGS methods and a vergence based formula (Barrett Universal II, BUII). The differences between the manifest and objective postoperative refractions and the predicted refractions were calculated. The percentage of eyes within ±0.5 D and ±1.0 D prediction error (PE), the mean, and the median absolute errors (MAE and MedAE) were also determined. Results: The mean age of the patients was 69.48 years; the axial length was between 21.19 and 25.39 mm. The number of eyes within ±0.5/±1.0 D PE was 96/108 (84.21%/94.73%) using the Hill-RBF 2.0 method, 92/107 (80.70%/93.85%) with the Kane method, 91/107 (79.82%/93.85%) with the Pearl-DGS method, and 91/106 (79.82%/92.98%) with the BUII formula, using subjective refraction. With objective refractometric data, PEs were within ±0.5 D in 88 (77.19%), 83 (72.80%), 82 (71.92%), and 80 (70.17%) cases (Hill-RBF, Kane, Pearl-DGS, BUII, respectively). MAE and MedAE were also best with the Hill-RBF 2.0 method (0.3 D; 0.18 D). Conclusion: Better accuracy of PE might be obtained by the Hill-RBF 2.0 method compared with BUII. The Kane and Pearl-DGS methods showed similar accuracy when compared with BUII.


2021 ◽  
pp. bjophthalmol-2020-318272
Author(s):  
Jascha Wendelstein ◽  
Peter Hoffmann ◽  
Nino Hirnschall ◽  
Isaak Raphael Fischinger ◽  
Siegfried Mariacher ◽  
...  

PurposeTo evaluate the accuracy of intraocular lens (IOL) power calculation in a patient cohort with short axial eye length to assess the performance of IOL power calculation schemes in strong hyperopes.MethodologyThe study was a single centre, single surgeon retrospective consecutive case series at the Augen- und Laserklinik, Castrop-Rauxel, Germany. Inclusion of patients after uneventful cataract surgery implanting either spherical (SA60AT) or aspheric (ZCB00) IOLs. Inclusion criteria were axial eye length <21.5 mm and/or emmetropising IOL power >28.5 D. Lens constants were optimised on a separate patient cohort considering the full bandwidth of axial eye length. Data of one single eye per patient were randomly included. The outcome measures were: mean absolute prediction error (MAE), median absolute prediction error, mean prediction error with SD and median prediction error and the percentage of eyes with an MAE within 0.25 D, 0.5 D, 0.75 D and 1.0 D.ResultsA total of 150 eyes from 150 patients were assessed. Okulix, PEARL-DGS, Kane and Castrop provided a statistically significantly smaller MAE compared with the Hoffer Q and SRK/T formulae.ConclusionIn our patient cohort with short axial eye length, the use of PEARL-DGS, Okulix, Kane or Castrop formulae showed the lowest MAE. The Castrop formula has not been published before, but will be disclosed with a ready-to-use Excel sheet as an addendum to this paper.


2014 ◽  
Vol 6 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Purushottam Joshi ◽  
Raman Mehta ◽  
Suma Ganesh

Introduction: Selection of an appropriately-powered IOL is a complex issue, especially in eyes with an axial length of less than 20 mm in pediatric cataract. Objective: To assess the accuracy of IOL power calculation formulae in pediatric cataracts in eyes with an axial length of less than 20 mm. Materials and methods: The records of children less than 15 years old with congenital cataract who had undergone primary IOL implantation were analyzed. Main outcome measures: The variables studied were axial length, keratometric values and the prediction error. The data were analyzed for prediction error determination using the SRK II, SRK T, Holladay 1 and Hoffer Q IOL power calculation formulae. The formula that gave the best prediction error was identified. Results: Twenty-eight eyes of 19 children were included in the study. The absolute prediction error was found to be 1.84 ± 2.09 diopters (D) with SRK II, 2.93±3.55D with SRK T, 3.63±4.06D with Holladay 1, and 4.83±5.02D with Hoffer Q. The number of eyes with the absolute prediction error within 0.5 D was 6 (21.42%) with SRK II, 4 (14.28%) with SRK T, 1 (3.57%) with Holladay 1, and 3 (10.71%) with Hoffer Q. The absolute prediction error with SRK II formula was significantly better than that with other formulae (P < .001). The axial length influenced the absolute prediction error with Hoffer Q formula (P = 0.04). The mean keratometry influenced the prediction error with SRK T formula (P = 0.02), Holladay 1 formula (P = 0.02) and Hoffer Q formula (P = 0.02). Conclusion: Although the absolute prediction error tends to remain high with all the present IOL power calculation formulae, SRK II was the most predictable formula in this study. DOI: http://dx.doi.org/10.3126/nepjoph.v6i1.10773 Nepal J Ophthalmol 2014; 6 (2): 56-64


2020 ◽  
pp. 112067212096203
Author(s):  
David Carmona-González ◽  
Alfredo Castillo-Gómez ◽  
Carlos Palomino-Bautista ◽  
Marta Romero-Domínguez ◽  
María Ángeles Gutiérrez-Moreno

Purpose To compare the accuracy of 11 intraocular lens (IOL) power calculation formulas (SRK-T, Hoffer Q, Holladay I, Haigis, Holladay II, Olsen, Barrett Universal II, Hill-RBF, Ladas Super formula, EVO and Kane). Setting Private university hospital (QuironSalud, Madrid, Spain). Design Retrospective case series Methods Data were compiled from 481 eyes of 481 patients who had undergone uneventful cataract surgery with IOL insertion. Preoperative biometric measurements were made using an IOL Master® 700. Respective ULIB IOL constants ( http://ocusoft.de/ulib/c1.htm ) for each of 4 IOL models implanted were used to calculate the predictive refractive outcome for each formula. This was compared with the actual refractive outcome determined 3 months postoperatively. The primary outcome was mean absolute prediction error (MAE). The study sample was divided according to axial length (AL) into three groups of eyes: short (⩽22.00 mm), normal (22.00–25.00 mm) and long (⩾25.00 mm). Results The Barrett Universal II and Haigis formulas yielded the lowest MAEs over the entire AL range ( p < .01, except EVO) as well as in the long ( p < .01, all formulas) and normal ( p < .01, except Haigis, Holladay II, Olsen and LSF) eyes. In the short eyes, the lower MAEs were provided by Haigis and EVO ( p < .01 except Hoffer Q, SRK/T and Holladay I). Conclusions Barrett Universal II was the most accurate for IOL power calculation in the normal and long eyes. For short eyes, the formulas Haigis and EVO seem best at predicting refractive outcomes.


2020 ◽  
pp. bjophthalmol-2020-315882
Author(s):  
Veronika Röggla ◽  
Achim Langenbucher ◽  
Christina Leydolt ◽  
Daniel Schartmüller ◽  
Luca Schwarzenbacher ◽  
...  

AimsTo provide clinical guidance on the use of intraocular lens (IOL) power calculation formulas according to the biometric parameters.Methods611 eyes that underwent cataract surgery were retrospectively analysed in subgroups according to the axial length (AL) and corneal power (K). The predicted residual refractive error was calculated and compared to evaluate the accuracy of the following formulas: Haigis, Hoffer Q, Holladay 1 and SRK/T. Furthermore, the percentages of eyes with ≤±0.25, ≤±0.5 and 1 dioptres (D) of the prediction error were recorded.ResultsThe Haigis formula showed the highest percentage of cases with ≤0.5 D in eyes with a short AL and steep K (90%), average AL and steep cornea (73.2%) but also in long eyes with a flat and average K (65% and 72.7%, respectively). The Hoffer Q formula delivered the lowest median absolute error (MedAE) in short eyes with an average K (0.30 D) and Holladay 1 in short eyes with a steep K (Holladay 1 0.24 D). SRK/T presented the highest percentage of cases with ≤0.5 D in average long eyes with a flat and average K (80.5% and 68.1%, respectively) and the lowest MedAE in long eyes with an average K (0.29 D).ConclusionOverall, the Haigis formula shows accurate results in most subgroups. However, attention must be paid to the axial eye length as well as the corneal power when choosing the appropriate formula to calculate an IOL power, especially in eyes with an unusual biometry.


Sign in / Sign up

Export Citation Format

Share Document