scholarly journals Drug Resistance Mutations Against Protease, Reverse Transcriptase and Integrase Inhibitors in People Living With HIV-1 Receiving Boosted Protease Inhibitors in South Africa

2020 ◽  
Vol 11 ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Sello Given Mikasi ◽  
Dominik Brado ◽  
Ruben Cloete ◽  
Kamlendra Singh ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yury Oliveira Chaves ◽  
Flávio Ribeiro Pereira ◽  
Rebeca de Souza Pinheiro ◽  
Diego Rafael Lima Batista ◽  
Antônio Alcirley da Silva Balieiro ◽  
...  

Virologic failure may occur because of poor treatment adherence and/or viral drug resistance mutations (DRM). In Brazil, the northern region exhibits the worst epidemiological scenarios for the human immunodeficiency virus (HIV). Thus, this study is aimed at investigating the genetic diversity of HIV-1 and DRM in Manaus. The cross-sectional study included people living with HIV on combined antiretroviral therapy and who had experienced virological failure during 2018-2019. Sequencing of the protease/reverse transcriptase (PR/RT) and C2V3 of the viral envelope gp120 (Env) regions was analyzed to determine subtypes/variants of HIV-1, DRMs, and tropism. Ninety-two individuals were analyzed in the study. Approximately 72% of them were male and 74% self-declared as heterosexual. Phylogenetic inference (PR/RT-Env) showed that most sequences were B subtype, followed by BF1 or B C mosaic genomes and few F1 and C sequences. Among the variants of subtype B at PR/RT, 84.3% were pandemic ( B PAN ), and 15.7% were Caribbean ( B CAR ). The DRMs most frequent were M184I/V (82.9%) for nucleoside reverse transcriptase inhibitors (NRTI), K103N/S (63.4%) for nonnucleoside reverse transcriptase inhibitor (NNRTI), and V82A/L/M (7.3%) for protease inhibitors (PI). DRM analysis depicted high levels of resistance for lamivudine and efavirenz in over 82.9% of individuals; although, low (7.7%) cross-resistance to etravirine was observed. A low level of resistance to protease inhibitors was found and included patients that take atazanavir/ritonavir (16.6%) and lopinavir (11.1%), which confirms that these antiretrovirals can be used—for most individuals. The thymidine analog mutations-2 (TAM-2) resistance pathway was higher in B CAR than in B PAN . Similar results from other Brazilian studies regarding HIV drug resistance were observed; however, we underscore a need for additional studies regarding subtype B CAR variants. Molecular epidemiology studies are an important tool for monitoring the prevalence of HIV drug resistance and can influence the public health policies.


2021 ◽  
Vol 22 (10) ◽  
pp. 5304
Author(s):  
Ana Santos-Pereira ◽  
Vera Triunfante ◽  
Pedro M. M. Araújo ◽  
Joana Martins ◽  
Helena Soares ◽  
...  

The success of antiretroviral treatment (ART) is threatened by the emergence of drug resistance mutations (DRM). Since Brazil presents the largest number of people living with HIV (PLWH) in South America we aimed at understanding the dynamics of DRM in this country. We analyzed a total of 20,226 HIV-1 sequences collected from PLWH undergoing ART between 2008–2017. Results show a mild decline of DRM over the years but an increase of the K65R reverse transcriptase mutation from 2.23% to 12.11%. This increase gradually occurred following alterations in the ART regimens replacing zidovudine (AZT) with tenofovir (TDF). PLWH harboring the K65R had significantly higher viral loads than those without this mutation (p < 0.001). Among the two most prevalent HIV-1 subtypes (B and C) there was a significant (p < 0.001) association of K65R with subtype C (11.26%) when compared with subtype B (9.27%). Nonetheless, evidence for K65R transmission in Brazil was found both for C and B subtypes. Additionally, artificial neural network-based immunoinformatic predictions suggest that K65R could enhance viral recognition by HLA-B27 that has relatively low prevalence in the Brazilian population. Overall, the results suggest that tenofovir-based regimens need to be carefully monitored particularly in settings with subtype C and specific HLA profiles.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Anoop T. Ambikan ◽  
Soham Gupta ◽  
Ujjwal Neogi ◽  
Graeme Brendon Jacobs

Abstract Background HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. Methods During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient’s treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. Results Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. Conclusions HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


2020 ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Anoop T Ambikan ◽  
Soham Gupta ◽  
Ujjwal Neogi ◽  
Graeme Brendon Jacobs

Abstract Background: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients suspected of failing on the South African national second-line cART regimen with bPIs.Methods: During 2017 and 2018, 67 patient samples were selected, of which 56 samples were successfully analyzed. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database.Results: Statistically significantly (p<0.001) higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to nucleoside reverse transcriptase inhibitors (11%; 6/56), non-nucleoside reverse transcriptase inhibitors (9%; 5/56) and integrase inhibitor RAM (4%; 2/56). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n=13) in protease and K65R (n=5), K103N (n=7) and M184V (n=5) in reverse transcriptase.Conclusions: HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in <20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


2021 ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Anoop T Ambikan ◽  
Soham Gupta ◽  
Ujjwal Neogi ◽  
Graeme Brendon Jacobs

Abstract Background: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs.Methods: During 2017 and 2018, 67 patient samples were sequenced using high throughput sequencing (HTS), of which 56 samples were included in the analysis because the patient’s treatment regimen were available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database.Results: Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p=0.042) and integrase inhibitor RAM (4%; 2/56; p=0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n=13) in protease and K65R (n=5), K103N (n=7) and M184V (n=5) in reverse transcriptase.Conclusions: HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in <20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223210
Author(s):  
Giselle de Faria Romero Soldi ◽  
Isadora Coutinho Ribeiro ◽  
Cintia Mayumi Ahagon ◽  
Luana Portes Ozório Coelho ◽  
Gabriela Bastos Cabral ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


2015 ◽  
Vol 43 (6) ◽  
pp. 3256-3271 ◽  
Author(s):  
Sushama Telwatte ◽  
Anna C. Hearps ◽  
Adam Johnson ◽  
Catherine F. Latham ◽  
Katie Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document