viral quasispecies
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Anna-Lena Sander ◽  
Andres Moreira-Soto ◽  
Stoian Yordanov ◽  
Ivan Toplak ◽  
Andrea Balboni ◽  
...  

The furin cleavage site in SARS-CoV-2 is unique within the Severe acute respiratory syndrome-related coronavirus (SrC) species. We re-assessed diverse SrC from European horseshoe bats and reveal molecular determinants such as purine richness, RNA secondary structures and viral quasispecies potentially enabling furin cleavage. Furin cleavage thus likely emerged from the SrC bat reservoir via molecular mechanisms conserved across reservoir-bound RNA viruses, supporting a natural origin of SARS-CoV-2.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Azahara Fuentes-Trillo ◽  
Carolina Monzó ◽  
Iris Manzano ◽  
Cristina Santiso-Bellón ◽  
Juliana da Silva Ribeiro de Andrade ◽  
...  

Abstract Background Genome assembly of viruses with high mutation rates, such as Norovirus and other RNA viruses, or from metagenome samples, poses a challenge for the scientific community due to the coexistence of several viral quasispecies and strains. Furthermore, there is no standard method for obtaining whole-genome sequences in non-related patients. After polyA RNA isolation and sequencing in eight patients with acute gastroenteritis, we evaluated two de Bruijn graph assemblers (SPAdes and MEGAHIT), combined with four different and common pre-assembly strategies, and compared those yielding whole genome Norovirus contigs. Results Reference-genome guided strategies with both host and target virus did not present any advantages compared to the assembly of non-filtered data in the case of SPAdes, and in the case of MEGAHIT, only host genome filtering presented improvements. MEGAHIT performed better than SPAdes in most samples, reaching complete genome sequences in most of them for all the strategies employed. Read binning with CD-HIT improved assembly when paired with different analysis strategies, and more notably in the case of SPAdes. Conclusions Not all metagenome assemblies are equal and the choice in the workflow depends on the species studied and the prior steps to analysis. We may need different approaches even for samples treated equally due to the presence of high intra host variability. We tested and compared different workflows for the accurate assembly of Norovirus genomes and established their assembly capacities for this purpose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Lin ◽  
Tao Jin ◽  
Xinfen Yu ◽  
Lifeng Liang ◽  
Guang Liu ◽  
...  

A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.


2021 ◽  
Vol 8 (1) ◽  
pp. 51-72
Author(s):  
Esteban Domingo ◽  
Carlos García-Crespo ◽  
Celia Perales

Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.


2021 ◽  
pp. 51-64
Author(s):  
Kim Philipp Jablonski ◽  
Niko Beerenwinkel

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Anoop T. Ambikan ◽  
Soham Gupta ◽  
Ujjwal Neogi ◽  
Graeme Brendon Jacobs

Abstract Background HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. Methods During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient’s treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. Results Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. Conclusions HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Francesca Cortese ◽  
Carolina González ◽  
Josep Gregori ◽  
Rosario Casillas ◽  
Luca Carioti ◽  
...  

AbstractPatients with HBeAg-negative chronic infection (CI) have not been extensively studied because of low viremia. The HBx protein, encoded by HBX, has a key role in viral replication. Here, we analyzed the viral quasispecies at the 5′ end of HBX in CI patients and compared it with that of patients in other clinical stages. Fifty-eight HBeAg-negative patients were included: 16 CI, 19 chronic hepatitis B, 16 hepatocellular carcinoma and 6 liver cirrhosis. Quasispecies complexity and conservation were determined in the region between nucleotides 1255 and 1611. Amino acid changes detected were tested in vitro. CI patients showed higher complexity in terms of mutation frequency and nucleotide diversity and higher quasispecies conservation (p < 0.05). A genotype D-specific pattern of mutations (A12S/P33S/P46S/T36D-G) was identified in CI (median frequency, 81.7%), which determined a reduction in HBV DNA release of up to 1.5 log in vitro. CI patients showed a more complex and conserved viral quasispecies than the other groups. The genotype-specific pattern of mutations could partially explain the low viremia observed in these patients.


JHEP Reports ◽  
2021 ◽  
pp. 100254
Author(s):  
Su-Ru Lin ◽  
Ta-Yu Yang ◽  
Cheng-Yuan Peng ◽  
You-Yu Lin ◽  
Chia-Yen Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document