scholarly journals Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution

2021 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Tamoor ◽  
Nadia A. Samak ◽  
Yunpu Jia ◽  
Muhammad Umar Mushtaq ◽  
Hassan Sher ◽  
...  

The widespread use of commercial polymers composed of a mixture of polylactic acid and polyethene terephthalate (PLA-PET) in bottles and other packaging materials has caused a massive environmental crisis. The valorization of these contaminants via cost-effective technologies is urgently needed to achieve a circular economy. The enzymatic hydrolysis of PLA-PET contaminants plays a vital role in environmentally friendly strategies for plastic waste recycling and degradation. In this review, the potential roles of microbial enzymes for solving this critical problem are highlighted. Various enzymes involved in PLA-PET recycling and bioconversion, such as PETase and MHETase produced by Ideonella sakaiensis; esterases produced by Bacillus and Nocardia; lipases produced by Thermomyces lanuginosus, Candida antarctica, Triticum aestivum, and Burkholderia spp.; and leaf-branch compost cutinases are critically discussed. Strategies for the utilization of PLA-PET’s carbon content as C1 building blocks were investigated for the production of new plastic monomers and different value-added products, such as cyclic acetals, 1,3-propanediol, and vanillin. The bioconversion of PET-PLA degradation monomers to polyhydroxyalkanoate biopolymers by Pseudomonas and Halomonas strains was addressed in detail. Different solutions to the production of biodegradable plastics from food waste, agricultural residues, and polyhydroxybutyrate (PHB)-accumulating bacteria were discussed. Fuel oil production via PLA-PET thermal pyrolysis and possible hybrid integration techniques for the incorporation of thermostable plastic degradation enzymes for the conversion into fuel oil is explained in detail.

Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 1
Author(s):  
Elena Mossali ◽  
Marco Diani ◽  
Marcello Colledani

Circular Economy is the solution for the current environmental crisis, representing a huge economic opportunity to build new sustainable businesses. However, many barriers need to be faced for its implementation at industrial scale—firstly, the lack of data sharing between the different stakeholders of product value-chains. The DigiPrime project is an EU-funded Innovation Action aimed at developing and demonstrating a digital platform with services able to unlock innovative cross-sectorial business models for the remanufacturing and recycling of target value-added products. In this paper, the concept behind the DigiPrime project is reported, with a particular focus on the construction sector.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Isaac Cann ◽  
Gabriel V. Pereira ◽  
Ahmed M. Abdel-Hamid ◽  
Heejin Kim ◽  
Daniel Wefers ◽  
...  

ABSTRACT Renewable fuels have gained importance as the world moves toward diversifying its energy portfolio. A critical step in the biomass-to-bioenergy initiative is deconstruction of plant cell wall polysaccharides to their unit sugars for subsequent fermentation to fuels. To acquire carbon and energy for their metabolic processes, diverse microorganisms have evolved genes encoding enzymes that depolymerize polysaccharides to their carbon/energy-rich building blocks. The microbial enzymes mostly target the energy present in cellulose, hemicellulose, and pectin, three major forms of energy storage in plants. In the effort to develop bioenergy as an alternative to fossil fuel, a common strategy is to harness microbial enzymes to hydrolyze cellulose to glucose for fermentation to fuels. However, the conversion of plant biomass to renewable fuels will require both cellulose and hemicellulose, the two largest components of the plant cell wall, as feedstock to improve economic feasibility. Here, we explore the enzymes and strategies evolved by two well-studied bacteria to depolymerize the hemicelluloses xylan/arabinoxylan and mannan. The sets of enzymes, in addition to their applications in biofuels and value-added chemical production, have utility in animal feed enzymes, a rapidly developing industry with potential to minimize adverse impacts of animal agriculture on the environment.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuel Nieto-Domínguez ◽  
José Alberto Martínez-Fernández ◽  
Beatriz Fernández de Toro ◽  
Juan A. Méndez-Líter ◽  
Francisco Javier Cañada ◽  
...  

Abstract Background Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. Results In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) β-d-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the β-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. Conclusions Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) β-d-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 499 ◽  
Author(s):  
M. Isabel Igeño ◽  
Daniel Macias ◽  
Rafael Blasco

Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a nitrogen source at alkaline pH. Genome sequencing of this strain allowed the detection of genes related to the utilization of furfurals as a carbon and energy source. Furfural and 5-(hydroxymethyl) furfural (HMF) are byproducts of sugars production during the hydrolysis of lignocellulosic biomass. Since they inhibit the yeast fermentation to obtain bioethanol from sugars, the biodegradation of these compounds has attracted certain scientific interest. P. pseudoalcaligenes was able to use furfuryl alcohol, furfural and furoic acid as carbon sources, but after a lag period of several days. Once adapted, the evolved strain (R1D) did not show any more prolonged lag phases. The transcriptomic analysis (RNA-seq) of R1D revealed a non-conservative punctual mutation (L261R) in BN5_2307, a member of the AraC family of activators, modifying the charge of the HTH region of the protein. The inactivation of the mutated gene in the evolved strain by double recombination reverted to the original phenotype. Although the bacterium did not assimilate HMF, it transformed it into value-added building blocks for the chemical industry. These results could be used to improve the production of cost-effective second-generation biofuels from agricultural wastes.


2021 ◽  
Author(s):  
Hendrik Ballerstedt ◽  
Till Tiso ◽  
Nick Wierckx ◽  
Ren Wei ◽  
Luc Avérous ◽  
...  

Abstract This article introduces the EU Horizon 2020 research project MIX-UP, “Mixed plastics biodegradation and upcycling using microbial communities”. The project focuses on the ambitious vision to change the traditional linear value chain of plastics to a sustainable, biodegradable based one. In MIX-UP, plastic mixtures containing five of the top six fossil-based recalcitrant plastics (PE, PUR, PP, PET, and PS), along with upcoming biobased and biodegradable plastics (bioplastics) such as PHA and PLA, will be used as feedstock for microbial transformations. The generated new workflow increases recycling quotas and adds value to present poorly recycled plastic waste streams. Consecutive controlled enzymatic and microbial degradation of mechanically pre-treated plastics waste combined with subsequent microbial conversion to polymers and value-added chemicals by mixed cultures. Through optimization of known plastic-degrading enzymes by integrated protein engineering, high specific binding capacities, stability, and catalytic efficacy towards a broad spectrum of plastic polymers under high salt content and temperature conditions will be achieved. Another focus lies in the search and isolation of novel enzymes active on recalcitrant polymers. MIX-UP will also enhance the production of enzymes and formulate enzyme cocktails tailored to specific waste streams. In vivo and in vitro application of these cocktails enables stable, self-sustaining microbiomes to convert the released plastic monomers selectively into value-added products, key building blocks, and biomass. Any of the remaining material recalcitrant to the enzymatic activity will be recirculated into the process by physicochemical treatment. The Chinese-European MIX-UP is a multidisciplinary and industry-participating consortium to address the market need for novel sustainable routes to valorize plastic waste streams. MIX-UP realizes a circular (bio) plastic economy and will contribute where mechanical and chemical plastic recycling show limits.


Author(s):  
Lakshika Dissanayake ◽  
Lahiru N. Jayakody

Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET “upcycling,” the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic–biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5438
Author(s):  
Chang Geun Yoo ◽  
Tae Hyun Kim

The shortage of resources and increasing climate changes have brought the need for sustainable and renewable resources to people’s attention. Biomass is an earth-abundant material and has great potential as a feedstock for alternative fuels and chemicals. For the effective utilization of biomass, this biopolymer has to be depolymerized and transformed into key building blocks and/or the targeted products, and biological or chemical catalysts are commonly used for the rapid and energy-efficient reactions. This Special Issue introduces recent advances in the catalytic conversion of biomass into biofuels and value-added products.


2018 ◽  
Vol 139 ◽  
pp. 144-157 ◽  
Author(s):  
Qi Zhang ◽  
Zhigang Yu ◽  
Liandong Zhu ◽  
Ting Ye ◽  
Jiaolan Zuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document