microbial cell factories
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 143)

H-INDEX

26
(FIVE YEARS 8)

2022 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Maria Sousa-Silva ◽  
Pedro Soares ◽  
João Alves ◽  
Daniel Vieira ◽  
Margarida Casal ◽  
...  

The yeast Cyberlindnera jadinii has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS families was performed by heterologous expression in Saccharomyces cerevisiae. The newly identified C. jadinii transporters present specificity for mono-, di-, and tricarboxylates. The transporters CjAto5, CjJen6, CjSlc5, and CjSlc13-1 display the broadest substrate specificity; CjAto2 accepts mono- and dicarboxylates; and CjAto1,3,4, CjJen1-5, CjSlc16, and CjSlc13-2 are specific for monocarboxylic acids. A detailed characterization of these transporters, including phylogenetic reconstruction, 3D structure prediction, and molecular docking analysis is presented here. The properties presented by these transporters make them interesting targets to be explored as organic acid exporters in microbial cell factories.


2022 ◽  
pp. 985-1011
Author(s):  
Hemansi ◽  
Raj Kamal Vibhuti ◽  
Rishikesh Shukla ◽  
Rishi Gupta ◽  
Jitendra Kumar Saini

Nutraceuticals are the food ingredients which have a proven beneficial effect on human health. These include low calories sugars, proteins and vitamins B complex, etc. Microorganisms, such as Lactococcus lactis, are ideal microbial cell factories for the production of these nutraceuticals. Developments in the genetic engineering of food-grade microorganisms have been very helpful for enhanced production or overexpression of nutraceuticals. This chapter describes the use of food grade microorganisms in industrial production of nutraceuticals. The main emphasis is on industrial production of these beneficial nutraceuticals by food grade microorganism. The diversity of microbial cell types, various approaches for improved nutraceutical production through process optimization as well as strain improvement of the producing microorganisms are discussed.


eFood ◽  
2021 ◽  
Author(s):  
Haolin Zhang ◽  
Giovanni Caprioli ◽  
Hidayat Hussain ◽  
Nguyen Phan Khoi Le ◽  
Mohamed A. Farag ◽  
...  

Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.


Author(s):  
Xiuyun Wu ◽  
Tao Wu ◽  
Ailin Huang ◽  
Yuanyuan Shen ◽  
Xuanyu Zhang ◽  
...  

Cordyceps militaris, a traditional medicinal ingredient with a long history of application in China, is regarded as a high-value fungus due to its production of various bioactive ingredients with a wide range of pharmacological effects in clinical treatment. Several typical bioactive ingredients, such as cordycepin, D-mannitol, cordyceps polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA), have received increasing attention due to their antitumor, antioxidant, antidiabetic, radioprotective, antiviral and immunomodulatory activities. Here, we systematically sorted out the latest research progress on the chemical characteristics, biosynthetic gene clusters and pathways of these four typical bioactive ingredients. This summary will lay a foundation for obtaining low-cost and high-quality bioactive ingredients in large amounts using microbial cell factories in the future.


Author(s):  
Zeinu Mussa Belew ◽  
Michal Poborsky ◽  
Hussam Hassan Nour-Eldin ◽  
Barbara Ann Halkier

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qiang Ding ◽  
Yadi Liu ◽  
Guipeng Hu ◽  
Liang Guo ◽  
Cong Gao ◽  
...  

AbstractMicrobial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L−1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L−1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering. Graphical Abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenwen Diao ◽  
Liang Guo ◽  
Qiang Ding ◽  
Cong Gao ◽  
Guipeng Hu ◽  
...  

AbstractMicrobial populations are a promising model for achieving microbial cooperation to produce valuable chemicals. However, regulating the phenotypic structure of microbial populations remains challenging. In this study, a programmed lysis system (PLS) is developed to reprogram microbial cooperation to enhance chemical production. First, a colicin M -based lysis unit is constructed to lyse Escherichia coli. Then, a programmed switch, based on proteases, is designed to regulate the effective lysis unit time. Next, a PLS is constructed for chemical production by combining the lysis unit with a programmed switch. As a result, poly (lactate-co-3-hydroxybutyrate) production is switched from PLH synthesis to PLH release, and the content of free PLH is increased by 283%. Furthermore, butyrate production with E. coli consortia is switched from E. coli BUT003 to E. coli BUT004, thereby increasing butyrate production to 41.61 g/L. These results indicate the applicability of engineered microbial populations for improving the metabolic division of labor to increase the efficiency of microbial cell factories.


2021 ◽  
pp. 49-75
Author(s):  
Sukumaran Karthika ◽  
Manoj Kumar ◽  
Santhalingam Gayathri ◽  
Perumal Varalakshmi ◽  
Balasubramaniem Ashokkumar

Sign in / Sign up

Export Citation Format

Share Document