scholarly journals Impact of the Whole Genome Duplication Event on PYK Activity and Effects of a PYK1 Mutation on Metabolism in S. cerevisiae

2021 ◽  
Vol 8 ◽  
Author(s):  
Hong Chen ◽  
Jamie E. Blum ◽  
Anna Thalacker-Mercer ◽  
Zhenglong Gu

Background: Evolution of aerobic fermentation (crabtree effect) in yeast is associated with the whole genome duplication (WGD) event, suggesting that duplication of certain genes may have altered yeast metabolism. The pyruvate kinase (PYK) gene is associated with alterations in cell metabolism, and duplicated during the WGD, generating PYK1 and PYK2. Thus, the impact of WGD on PYK activity and role of PYK in yeast metabolism were explored.Methods: PYK activity in the presence or absence of fructose-1,6-bisphosphate (FBP) was compared between pre- and post-WGD yeast. Glucose consumption, ethanol production, and oxygen consumption were measured in wildtype yeast and yeast with a T403E point mutation, which alters FBP binding affinity.Results: FBP stimulated increased PYK activity in pre-WGD yeast and in the PYK1 isoforms of post-WGD yeast, but not in the PYK2 isoforms of post-WGD yeast. Compared to wildtype, T403E mutant yeast displayed reduced glucose consumption, reduced ethanol production, and increased mitochondrial metabolism.Conclusion: The WGD event impacted the sensitivity of PYK activity to FBP. Mutations in the FBP binding domain of PYK induce metabolic shifts that favor respiration and suppress fermentation.

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Yanmei Yang ◽  
Jinpeng Wang ◽  
Jianyong Di

Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.


GigaScience ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Zheng Fan ◽  
Tao Yuan ◽  
Piao Liu ◽  
Lu-Yu Wang ◽  
Jian-Feng Jin ◽  
...  

Abstract Background The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. Results We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. Conclusions The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species’ adaptation to the environment.


2010 ◽  
Vol 6 (11) ◽  
pp. 2305 ◽  
Author(s):  
Luigi Grassi ◽  
Diana Fusco ◽  
Alessandro Sellerio ◽  
Davide Corà ◽  
Bruno Bassetti ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shijing Feng ◽  
Zhenshan Liu ◽  
Jian Cheng ◽  
Zihe Li ◽  
Lu Tian ◽  
...  

AbstractZanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites, which create a characteristic aroma and tingling sensation in the mouth. Owing to the high proportion of repetitive sequences, high heterozygosity, and increased chromosome number of Z. bungeanum, the assembly of its chromosomal pseudomolecules is extremely challenging. Here, we present a genome sequence for Z. bungeanum, with a dramatically expanded size of 4.23 Gb, assembled into 68 chromosomes. This genome is approximately tenfold larger than that of its close relative Citrus sinensis. After the divergence of Zanthoxylum and Citrus, the lineage-specific whole-genome duplication event η-WGD approximately 26.8 million years ago (MYA) and the recent transposable element (TE) burst ~6.41 MYA account for the substantial genome expansion in Z. bungeanum. The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture. Integrative genomic and transcriptomic analyses suggested that prominent species-specific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools, terpenoids, and anthocyanins, which contribute to the special flavor and appearance of Z. bungeanum. In summary, the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.


2018 ◽  
Author(s):  
Michael R. McKain ◽  
Matt C. Estep ◽  
Rémy Pasquet ◽  
Daniel J. Layton ◽  
Dilys M. Vela Díaz ◽  
...  

AbstractMaize (Zea mays ssp. mays) is not only one of the world’s most important crops, but it also is a powerful tool for studies of genetics, genomics, and cytology. The genome of maize shows the unmistakable signature of an ancient hybridization event followed by whole genome duplication (allopolyploidy), but the parents of this event have been a mystery for over a century, since studies of maize cytogenetics began. Here we show that the whole genome duplication event preceded the divergence of the entire genus Zea and its sister genus Tripsacum. One genome was donated, in whole or in part, by a plant related to the modern African genera Urelytrum and Vossia, although genomic rearrangement has been extensive. The other genome donor is less well-supported, but may have been related to the modern Rottboellia-Hemarthria clade, which is also African. Thus Zea and Tripsacum together represent a New World radiation derived from African ancestors.


2016 ◽  
Author(s):  
Alex Harkess ◽  
Francesco Mercati ◽  
Loredana Abbate ◽  
Michael McKain ◽  
J. Chris Pires ◽  
...  

AbstractCurrent phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once or possibly twice in the genus Asparagus. Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n=2x=20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion or retrotransposon proliferation in dioecious species. We first estimate genome sizes or use published values for four hermaphrodites and four dioecious species distributed across the phylogeny and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements in particular have undergone a marked proliferation in dioecious species. In the absence of a detectable whole genome duplication event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species.


Nature ◽  
2019 ◽  
Vol 577 (7788) ◽  
pp. 79-84 ◽  
Author(s):  
Liangsheng Zhang ◽  
Fei Chen ◽  
Xingtan Zhang ◽  
Zhen Li ◽  
Yiyong Zhao ◽  
...  

AbstractWater lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1–3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Sign in / Sign up

Export Citation Format

Share Document