scholarly journals TMS-EEG Biomarkers of Amnestic Mild Cognitive Impairment Due to Alzheimer’s Disease: A Proof-of-Concept Six Years Prospective Study

2021 ◽  
Vol 13 ◽  
Author(s):  
Florinda Ferreri ◽  
Andrea Guerra ◽  
Luca Vollero ◽  
David Ponzo ◽  
Sara Määtta ◽  
...  

Background: Early and affordable identification of subjects with amnestic mild cognitive impairment (aMCI) who will convert to Alzheimer’s disease (AD) is a major scientific challenge.Objective: To investigate the neurophysiological hallmarks of sensorimotor cortex function in aMCI under the hypothesis that some may represent the plastic rearrangements induced by neurodegeneration, hence predictors of future conversion to AD. We sought to determine (1) whether the sensorimotor network shows peculiar alterations in patients with aMCI and (2) if sensorimotor network alterations predict long-term disease progression at the individual level.Methods: We studied several transcranial magnetic stimulation (TMS)-electroencephalogram (EEG) parameters of the sensorimotor cortex in a group of patients with aMCI and followed them for 6 years. We then identified aMCI who clinically converted to AD [prodromal to AD-MCI (pAD-MCI)] and those who remained cognitively stable [non-prodromal to AD-MCI (npAD-MCI)].Results: Patients with aMCI showed reduced motor cortex (M1) excitability and disrupted EEG synchronization [decreased intertrial coherence (ITC)] in alpha, beta and gamma frequency bands compared to the control subjects. The degree of alteration in M1 excitability and alpha ITC was comparable between pAD-MCI and npAD-MCI. Importantly, beta and gamma ITC impairment in the stimulated M1 was greater in pAD-MCI than npAD-MCI. Furthermore, an additional parameter related to the waveform shape of scalp signals, reflecting time-specific alterations in global TMS-induced activity [stability of the dipolar activity (sDA)], discriminated npAD-MCI from MCI who will convert to AD.Discussion: The above mentioned specific cortical changes, reflecting deficit of synchronization within the cortico-basal ganglia-thalamo-cortical loop in aMCI, may reflect the pathological processes underlying AD. These changes could be tested in larger cohorts as neurophysiological biomarkers of AD.

2020 ◽  
Vol 17 ◽  
Author(s):  
Hyung-Ji Kim ◽  
Jae-Hong Lee ◽  
E-nae Cheong ◽  
Sung-Eun Chung ◽  
Sungyang Jo ◽  
...  

Background: Amyloid PET allows for the assessment of amyloid β status in the brain, distinguishing true Alzheimer’s disease from Alzheimer’s disease-mimicking conditions. Around 15–20% of patients with clinically probable Alzheimer’s disease have been found to have no significant Alzheimer’s pathology on amyloid PET. However, a limited number of studies had been conducted this subpopulation in terms of clinical progression. Objective: We investigated the risk factors that could affect the progression to dementia in patients with amyloid-negative amnestic mild cognitive impairment (MCI). Methods: This study was a single-institutional, retrospective cohort study of patients over the age of 50 with amyloidnegative amnestic MCI who visited the memory clinic of Asan Medical Center with a follow-up period of more than 36 months. All participants underwent brain magnetic resonance imaging (MRI), detailed neuropsychological testing, and fluorine-18[F18]-florbetaben amyloid PET. Results: During the follow-up period, 39 of 107 patients progressed to dementia from amnestic MCI. In comparison with the stationary group, the progressed group had a more severe impairment in verbal and visual episodic memory function and hippocampal atrophy, which showed an Alzheimer’s disease-like pattern despite the lack of evidence for significant Alzheimer’s disease pathology. Voxel-based morphometric MRI analysis revealed that the progressed group had a reduced gray matter volume in the bilateral cerebellar cortices, right temporal cortex, and bilateral insular cortices. Conclusion: Considering the lack of evidence of amyloid pathology, clinical progression of these subpopulation may be caused by other neuropathologies such as TDP-43, abnormal tau or alpha synuclein that lead to neurodegeneration independent of amyloid-driven pathway. Further prospective studies incorporating biomarkers of Alzheimer’s diseasemimicking dementia are warranted.


2014 ◽  
Vol 11 (2) ◽  
pp. 200-205
Author(s):  
Aleksandra Klimkowicz-Mrowiec ◽  
Lukasz Krzywoszanski ◽  
Karolina Spisak ◽  
Bryan Donohue ◽  
Andrzej Szczudlik ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e105623 ◽  
Author(s):  
Katerina Sheardova ◽  
Jan Laczó ◽  
Martin Vyhnalek ◽  
Ross Andel ◽  
Ivana Mokrisova ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Irene B. Meier ◽  
Max Buegler ◽  
Robbert Harms ◽  
Azizi Seixas ◽  
Arzu Çöltekin ◽  
...  

AbstractConventional neuropsychological assessments for Alzheimer’s disease are burdensome and inaccurate at detecting mild cognitive impairment and predicting Alzheimer’s disease risk. Altoida’s Digital Neuro Signature (DNS), a longitudinal cognitive test consisting of two active digital biomarker metrics, alleviates these limitations. By comparison to conventional neuropsychological assessments, DNS results in faster evaluations (10 min vs 45–120 min), and generates higher test-retest in intraindividual assessment, as well as higher accuracy at detecting abnormal cognition. This study comparatively evaluates the performance of Altoida’s DNS and conventional neuropsychological assessments in intraindividual assessments of cognition and function by means of two semi-naturalistic observational experiments with 525 participants in laboratory and clinical settings. The results show that DNS is consistently more sensitive than conventional neuropsychological assessments at capturing longitudinal individual-level change, both with respect to intraindividual variability and dispersion (intraindividual variability across multiple tests), across three participant groups: healthy controls, mild cognitive impairment, and Alzheimer’s disease. Dispersion differences between DNS and conventional neuropsychological assessments were more pronounced with more advanced disease stages, and DNS-intraindividual variability was able to predict conversion from mild cognitive impairment to Alzheimer’s disease. These findings are instrumental for patient monitoring and management, remote clinical trial assessment, and timely interventions, and will hopefully contribute to a better understanding of Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document