scholarly journals Advances in Theoretical Calculation of Halide Perovskites for Photocatalysis

2021 ◽  
Vol 3 ◽  
Author(s):  
Xiaolin Liu ◽  
Jichao Fan ◽  
Changzhu Huang

Photocatalysis, which includes water splitting for hydrogen fuel generation, degradation of organic pollutants, and CO2 reduction using renewable solar energy, is one of the most promising solutions for environmental protection and energy conversion. Halide perovskite has recently emerged as a new promising material for photocatalytic applications. The exploration of new efficient halide perovskite-based photocatalysts and understanding of photocatalytic reaction mechanisms can be revealed using theoretical calculations. The progress and applications of first-principles atomistic modeling and simulation of halide perovskite photocatalysts, including metal halide perovskites, halide perovskite heterojunctions, and other promising perovskite derivatives, are presented in this review. Critical insights into the challenges and future research directions of photocatalysis using halide perovskites are also discussed.

2020 ◽  
Vol 92 (12) ◽  
pp. 1953-1969
Author(s):  
Yisong Zhu ◽  
Zhenjun Wu ◽  
Xiuqiang Xie ◽  
Nan Zhang

AbstractMXene with two-dimensional layered structure and desirable electronic properties has emerged as a promising candidate to construct MXene-based composites towards various photocatalytic applications. As compared to the downhill-type photodegradation reactions, artificial photosynthesis often involves thermodynamic uphill reactions with a large positive change in Gibbs free energy. Recent years have witnessed the effectiveness of MXene in enhancing the photoactivity of MXene-based composites for solar fuel synthesis. In this review, we mainly focus on the applications of MXene-based composites for photocatalytic solar fuel production. We will start from summarizing the general synthesis of MXene-based composite photocatalysts. Then the recent progress on MXene-based composite photocatalysts for solar fuel synthesis, including water splitting for H2 production, CO2 reduction to solar fuels, and N2 fixation for NH3 synthesis is elucidated. The roles of MXene playing in improving the photoactivity of MXene-based composites in these applications have also been discussed. In the last section, perspectives on the future research directions of MXene-based composites towards the applications of artificial photosynthesis are presented.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 972
Author(s):  
Kesong Yang ◽  
Ying Dai ◽  
Baibiao Huang

TiO2 has extensive applications in the fields of renewable energy and environmental protections such as being used as photocatalysts or electron transport layers in solar cells. To achieve highly efficient photocatalytic and photovoltaic applications, ongoing efforts are being devoted to developing novel TiO2-based material structures or compositions, in which a first-principles computational approach is playing an increasing role. In this review article, we discuss recent computational and theoretical studies of structural, energetic, electronic, and optical properties of TiO2-based nanocluster, bulk, and material interface for photocatalytic and photovoltaic applications. We conclude the review with a discussion of future research directions in the field.


2019 ◽  
Vol 49 (1) ◽  
pp. 53-77 ◽  
Author(s):  
Liang-Feng Huang ◽  
John R. Scully ◽  
James M. Rondinelli

Understanding and predicting materials corrosion under electrochemical environments are of increasing importance to both established and developing industries and technologies, including construction, marine materials, geology, and biomedicine, as well as to energy generation, storage, and conversion. Owing to recent progress in the accuracy and capability of density functional theory (DFT) calculations to describe the thermodynamic stability of materials, this powerful computational tool can be used both to describe materials corrosion and to design materials with the desired corrosion resistance by using first-principles electrochemical phase diagrams. We review the progress in simulating electrochemical phase diagrams of bulk solids, surface systems, and point defects in materials using DFT methods as well as the application of these ab initio phase diagrams in realistic environments. We conclude by summarizing the remaining challenges in the thermodynamic modeling of materials corrosion and promising future research directions.


Sign in / Sign up

Export Citation Format

Share Document