scholarly journals Robot Communication: Network Traffic Classification Based on Deep Neural Network

2021 ◽  
Vol 15 ◽  
Author(s):  
Mengmeng Ge ◽  
Xiangzhan Yu ◽  
Likun Liu

With the rapid popularization of robots, the risks brought by robot communication have also attracted the attention of researchers. Because current traffic classification methods based on plaintext cannot classify encrypted traffic, other methods based on statistical analysis require manual extraction of features. This paper proposes (i) a traffic classification framework based on a capsule neural network. This method has a multilayer neural network that can automatically learn the characteristics of the data stream. It uses capsule vectors instead of a single scalar input to effectively classify encrypted network traffic. (ii) For different network structures, a classification network structure combining convolution neural network and long short-term memory network is proposed. This structure has the characteristics of learning network traffic time and space characteristics. Experimental results show that the network model can classify encrypted traffic and does not require manual feature extraction. And on the basis of the previous tool, the recognition accuracy rate has increased by 8%

2014 ◽  
Vol 989-994 ◽  
pp. 1895-1900
Author(s):  
Hong Zhi Wang ◽  
Li Hui Yan

The traditional network traffic classification methods have many shortcomings, the classification accuracy is not high, the encrypted traffic cannot be analyzed, and the computational burden is usually large. To overcome above problems, this paper presents a new network traffic classification method based on optimized Hadamard matrix and ECOC. Through restructuring the Hadamard matrix and erasing the interference rows and columns, the ECOC table is optimized while eliminating SVM sample imbalance, and the error correcting ability for classification is reserved. The experiments results show that the proposed method outperform in network traffic classification and improve the classification accuracy.


2019 ◽  
Vol 9 (12) ◽  
pp. 2550 ◽  
Author(s):  
Lim ◽  
Kim ◽  
Kim ◽  
Hong ◽  
Han

Recently, with the advent of various Internet of Things (IoT) applications, a massive amount of network traffic is being generated. A network operator must provide different quality of service, according to the service provided by each application. Toward this end, many studies have investigated how to classify various types of application network traffic accurately. Especially, since many applications use temporary or dynamic IP or Port numbers in the IoT environment, only payload-based network traffic classification technology is more suitable than the classification using the packet header information as well as payload. Furthermore, to automatically respond to various applications, it is necessary to classify traffic using deep learning without the network operator intervention. In this study, we propose a traffic classification scheme using a deep learning model in software defined networks. We generate flow-based payload datasets through our own network traffic pre-processing, and train two deep learning models: 1) the multi-layer long short-term memory (LSTM) model and 2) the combination of convolutional neural network and single-layer LSTM models, to perform network traffic classification. We also execute a model tuning procedure to find the optimal hyper-parameters of the two deep learning models. Lastly, we analyze the network traffic classification performance on the basis of the F1-score for the two deep learning models, and show the superiority of the multi-layer LSTM model for network packet classification.


Sign in / Sign up

Export Citation Format

Share Document