scholarly journals Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization

Author(s):  
Vladislav Royter ◽  
Alireza Gharabaghi
2016 ◽  
Vol 9 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Dominic Kraus ◽  
Georgios Naros ◽  
Robert Bauer ◽  
Fatemeh Khademi ◽  
Maria Teresa Leão ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. e114-e116
Author(s):  
Eliana Garcia-Cossio ◽  
Sophia Wunder ◽  
Klaus Schellhorn

2016 ◽  
Vol 127 (3) ◽  
pp. e41 ◽  
Author(s):  
C. Zrenner ◽  
J. Tünnerhoff ◽  
C. Zipser ◽  
F. Müller-Dahlhaus ◽  
U. Ziemann

2021 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Aqsa Shakeel ◽  
Takayuki Onojima ◽  
Toshihisa Tanaka ◽  
Keiichi Kitajo

It is a technically challenging problem to assess the instantaneous brain state using electroencephalography (EEG) in a real-time closed-loop setup because the prediction of future signals is required to define the current state, such as the instantaneous phase and amplitude. To accomplish this in real-time, a conventional Yule–Walker (YW)-based autoregressive (AR) model has been used. However, the brain state-dependent real-time implementation of a closed-loop system employing an adaptive method has not yet been explored. Our primary purpose was to investigate whether time-series forward prediction using an adaptive least mean square (LMS)-based AR model would be implementable in a real-time closed-loop system or not. EEG state-dependent triggers synchronized with the EEG peaks and troughs of alpha oscillations in both an open-eyes resting state and a visual task. For the resting and visual conditions, statistical results showed that the proposed method succeeded in giving triggers at a specific phase of EEG oscillations for all participants. These individual results showed that the LMS-based AR model was successfully implemented in a real-time closed-loop system targeting specific phases of alpha oscillations and can be used as an adaptive alternative to the conventional and machine-learning approaches with a low computational load.


Author(s):  
Andreas Meinel ◽  
Jan Sosulski ◽  
Stephan Schraivogel ◽  
Janine Reis ◽  
Michael Tangermann

2018 ◽  
Vol 85 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Natalie Mrachacz-Kersting ◽  
Andrew J. T. Stevenson ◽  
Helle R. M. Jørgensen ◽  
Kåre Eg Severinsen ◽  
Susan Aliakbaryhosseinabadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document