scholarly journals Binge Alcohol Drinking Alters Synaptic Processing of Executive and Emotional Information in Core Nucleus Accumbens Medium Spiny Neurons

2021 ◽  
Vol 15 ◽  
Author(s):  
Jenya Kolpakova ◽  
Vincent van der Vinne ◽  
Pablo Giménez-Gómez ◽  
Timmy Le ◽  
In-Jee You ◽  
...  

The nucleus accumbens (NAc) is a forebrain region mediating the positive-reinforcing properties of drugs of abuse, including alcohol. It receives glutamatergic projections from multiple forebrain and limbic regions such as the prefrontal cortex (PFCx) and basolateral amygdala (BLA), respectively. However, it is unknown how NAc medium spiny neurons (MSNs) integrate PFCx and BLA inputs, and how this integration is affected by alcohol exposure. Because progress has been hampered by the inability to independently stimulate different pathways, we implemented a dual wavelength optogenetic approach to selectively and independently stimulate PFCx and BLA NAc inputs within the same brain slice. This approach functionally demonstrates that PFCx and BLA inputs synapse onto the same MSNs where they reciprocally inhibit each other pre-synaptically in a strict time-dependent manner. In alcohol-naïve mice, this temporal gating of BLA-inputs by PFCx afferents is stronger than the reverse, revealing that MSNs prioritize high-order executive processes information from the PFCx. Importantly, binge alcohol drinking alters this reciprocal inhibition by unilaterally strengthening BLA inhibition of PFCx inputs. In line with this observation, we demonstrate that in vivo optogenetic stimulation of the BLA, but not PFCx, blocks binge alcohol drinking escalation in mice. Overall, our results identify NAc MSNs as a key integrator of executive and emotional information and show that this integration is dysregulated during binge alcohol drinking.

2018 ◽  
Author(s):  
Daniel F. Manvich ◽  
Alyssa K. Petko ◽  
Rachel C. Branco ◽  
Stephanie L. Foster ◽  
Kirsten A. Porter-Stransky ◽  
...  

AbstractBackgroundThe D3 receptor (D3R) has emerged as a promising pharmacotherapeutic target for the treatment of several diseases including schizophrenia, Parkinson’s disease, and substance use disorders. However, studies investigating the modulatory impact of D3R antagonism on dopamine neurotransmission or the effects drugs of abuse have produced mixed results, in part because D3R-targeted compounds often also interact with D2 receptors (D2R). The purpose of this study was to compare the consequences of selective D2R or D3R antagonism on the behavioral effects of cocaine in mice, and to identify the neurobiological mechanisms underlying their modulatory effects.MethodsWe characterized the effects of selective D2R or D3R antagonism in mice on 1) basal and cocaine-induced locomotor activity, 2) presynaptic dopamine release and clearance in the nucleus accumbens using ex vivo fast scan cyclic voltammetry, and 3) dopamine-mediated signaling in D1-expressing and D2-expressing medium spiny neurons using ex vivo electrophysiology.ResultsPretreatment with the selective D2R antagonist L-741,626 attenuated, while pretreatment with the selective D3R antagonist PG01037 enhanced, the locomotor-activating effects of acute and repeated cocaine administration. While both antagonists potentiated cocaine-induced increases in presynaptic DA release, D3R blockade uniquely facilitated DA-mediated excitation of D1-expressing medium spiny neurons in the nucleus accumbens.ConclusionsSelective D3R antagonism potentiates the behavioral-stimulant effects of cocaine in mice, an effect that is in direct opposition to that produced by selective D2R antagonism or nonselective D2-like receptor antagonists, likely by facilitating D1-mediated excitation in the nucleus accumbens. These findings provide important insights into the neuropharmacological actions of D3R antagonists on mesolimbic dopamine neurotransmission.


2017 ◽  
Author(s):  
Lucas Sjulson ◽  
Adrien Peyrache ◽  
Andrea Cumpelik ◽  
Daniela Cassataro ◽  
György Buzsáki

Conditioned place preference (CPP) is a widely used model of addiction-related behavior whose underlying mechanism is not understood. In this study, we used dual site silicon probe recordings in freely moving mice to examine interactions between the hippocampus and nucleus accumbens in cocaine CPP. We found that CPP was associated with recruitment of nucleus accumbens medium spiny neurons to fire in the cocaine-paired location, and this recruitment was driven predominantly by selective strengthening of hippocampal inputs arising from place cells that encode the cocaine-paired location. These findings provide in vivo evidence that the synaptic potentiation in the accumbens caused by repeated cocaine administration preferentially affects inputs that were active at the time of drug exposure. This provides a potential physiological mechanism by which drug use becomes associated with specific environmental contexts.


2018 ◽  
Author(s):  
Daniel M. Kircher ◽  
Heather Aziz ◽  
Regina A. Mangieri ◽  
Richard A. Morrisett

ABSTRACTNucleus accumbens dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) have been implicated in the formation of dependence to many drugs of abuse including alcohol. Previous studies have revealed that acute alcohol exposure suppresses glutamatergic signaling within the accumbens and repeated alcohol exposure enhances glutamatergic signaling. D1-MSNs receive glutamatergic input from several brain regions and it is not currently known how individual inputs onto D1-MSNs are altered by alcohol experience. To Address this, we used virally mediated expression of Channelrhodopsin (ChR2) in ventral hippocampal (vHipp) glutamate neurons to selectively activate vHipp to D1-MSN synapses and compared synaptic adaptations in response to low and high alcohol experiencein vitroandin vivo. Alcohol experience enhanced glutamatergic activity and abolished long-term depression (LTD) at ventral hippocampal (vHipp) to D1-MSN synapses. Following chronic alcohol experience GluA2-lacking AMPA receptors, which are Ca-permeable, were inserted into vHipp to D1-MSN synapses. These alcohol-induced adaptations of glutamatergic signaling occurred at lower levels of exposure than previously reported. The loss of LTD expression and enhancement in glutamatergic signaling from the vHipp to D1-MSNs in the nucleus accumbens may play a critical role in the formation of alcohol dependence and enhancements in ethanol consumption. Reversal of alcohol-induced insertion of Ca-permeable AMPA receptors and enhancement of glutamatergic activity at vHipp to D1-MSNs presents potential targets for intervention during early exposure to alcohol.SIGNIFICANCE STATEMENTThe work presented here is the first to elucidate how an individual glutamatergic input onto D1-MSNs of the accumbens shell (shNAc) are altered by repeated ethanol exposure. Our findings suggest that glutamatergic input from the ventral hippocampus (vHipp) onto D1-MSNs is enhanced following drinking in a two-bottle choice (2BC) paradigm and is further enhanced by chronic intermittent ethanol (CIE) vapor exposure which escalated volitional ethanol intake. A critical finding was the insertion of Ca-permeable AMPA receptors into vHipp-shNAc D1-MSN synapses following CIE exposure, and more importantly following ethanol consumption in the absence of vapor exposure. These findings suggest that enhancements of glutamatergic input from the vHipp and insertion of Ca-permeable AMPARs play a role in the formation of ethanol dependence.


2022 ◽  
Author(s):  
Tadaaki Nishioka ◽  
Tom Macpherson ◽  
Kosuke Hamaguchi ◽  
Takatoshi Hikida

Abstract Learnt associations between environmental cues and the outcomes they predict (cue-outcome associations) play a major role in behavioral control, guiding not only which responses we should perform, but also which we should avoid, in order to achieve a specific goal. The encoding of such cue-outcome associations, as well as the performance of cue-guided goal-directed behavior, is thought to involve dopamine D1 and D2 receptor-expressing medium spiny neurons (D1-/D2-MSNs) of the nucleus accumbens (NAc). Here, using a visual discrimination task in mice, we assessed the role of NAc D1-/D2-MSNs in cue-guided goal-directed avoidance of inappropriate responding. Cell-type specific neuronal silencing and in-vivo imaging revealed NAc D2-MSNs to selectively contribute to cue-guided avoidance behavior, with activation of NAc D2-MSNs following response error playing an important role in optimizing future goal-directed behavior. Our findings indicate that error-signaling by NAc D2-MSNs underlies the ability to use environmental cues to avoid inappropriate behavior.


2017 ◽  
Vol 114 (19) ◽  
pp. 5029-5034 ◽  
Author(s):  
Grietje Krabbe ◽  
S. Sakura Minami ◽  
Jon I. Etchegaray ◽  
Praveen Taneja ◽  
Biljana Djukic ◽  
...  

Frontotemporal dementia (FTD) is the second most common dementia before 65 years of age. Haploinsufficiency in the progranulin (GRN) gene accounts for 10% of all cases of familial FTD. GRN mutation carriers have an increased risk of autoimmune disorders, accompanied by elevated levels of tissue necrosis factor (TNF) α. We examined behavioral alterations related to obsessive–compulsive disorder (OCD) and the role of TNFα and related signaling pathways in FTD patients with GRN mutations and in mice lacking progranulin (PGRN). We found that patients and mice with GRN mutations displayed OCD and self-grooming (an OCD-like behavior in mice), respectively. Furthermore, medium spiny neurons in the nucleus accumbens, an area implicated in development of OCD, display hyperexcitability in PGRN knockout mice. Reducing levels of TNFα in PGRN knockout mice abolished excessive self-grooming and the associated hyperexcitability of medium spiny neurons of the nucleus accumbens. In the brain, PGRN is highly expressed in microglia, which are a major source of TNFα. We therefore deleted PGRN specifically in microglia and found that it was sufficient to induce excessive grooming. Importantly, excessive grooming in these mice was prevented by inactivating nuclear factor κB (NF-κB) in microglia/myeloid cells. Our findings suggest that PGRN deficiency leads to excessive NF-κB activation in microglia and elevated TNFα signaling, which in turn lead to hyperexcitability of medium spiny neurons and OCD-like behavior.


2020 ◽  
Vol 87 (11) ◽  
pp. 992-1000 ◽  
Author(s):  
Michel Engeln ◽  
Swarup Mitra ◽  
Ramesh Chandra ◽  
Utsav Gyawali ◽  
Megan E. Fox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document