scholarly journals A Novel Recurrent Neural Network to Classify EEG Signals for Customers' Decision-Making Behavior Prediction in Brand Extension Scenario

2021 ◽  
Vol 15 ◽  
Author(s):  
Qingguo Ma ◽  
Manlin Wang ◽  
Linfeng Hu ◽  
Linanzi Zhang ◽  
Zhongling Hua

It was meaningful to predict the customers' decision-making behavior in the field of market. However, due to individual differences and complex, non-linear natures of the electroencephalogram (EEG) signals, it was hard to classify the EEG signals and to predict customers' decisions by using traditional classification methods. To solve the aforementioned problems, a recurrent t-distributed stochastic neighbor embedding (t-SNE) neural network was proposed in current study to classify the EEG signals in the designed brand extension paradigm and to predict the participants' decisions (whether to accept the brand extension or not). The recurrent t-SNE neural network contained two steps. In the first step, t-SNE algorithm was performed to extract features from EEG signals. Second, a recurrent neural network with long short-term memory (LSTM) layer, fully connected layer, and SoftMax layer was established to train the features, classify the EEG signals, as well as predict the cognitive performance. The proposed network could give a good prediction with accuracy around 87%. Its superior in prediction accuracy as compared to a recurrent principal component analysis (PCA) network, a recurrent independent component correlation algorithm [independent component analysis (ICA)] network, a t-SNE support vector machine (SVM) network, a t-SNE back propagation (BP) neural network, a deep LSTM neural network, and a convolutional neural network were also demonstrated. Moreover, the performance of the proposed network with different activated channels were also investigated and compared. The results showed that the proposed network could make a relatively good prediction with only 16 channels. The proposed network would become a potentially useful tool to help a company in making marketing decisions and to help uncover the neural mechanisms behind individuals' decision-making behavior with low cost and high efficiency.

2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


Sign in / Sign up

Export Citation Format

Share Document