scholarly journals Preliminary Exploration of the Sequence of Nerve Fiber Bundles Involvement for Idiopathic Normal Pressure Hydrocephalus: A Correlation Analysis Using Diffusion Tensor Imaging

2021 ◽  
Vol 15 ◽  
Author(s):  
Wenjun Huang ◽  
Xuhao Fang ◽  
Shihong Li ◽  
Renling Mao ◽  
Chuntao Ye ◽  
...  

The study preliminarily explored the sequence and difference of involvement in different neuroanatomical structures in idiopathic normal pressure hydrocephalus (INPH). We retrospectively analyzed the differences in diffusion tensor imaging (DTI) parameters in 15 ROIs [including the bilateral centrum semiovale (CS), corpus callosum (CC) (body, genu, and splenium), head of the caudate nucleus (CN), internal capsule (IC) (anterior and posterior limb), thalamus (TH), and the bilateral frontal horn white matter hyperintensity (FHWMH)] between 27 INPH patients and 11 healthy controls and the correlation between DTI indices and clinical symptoms, as evaluated by the INPH grading scale (INPHGS), the Mini-Mental State Examination (MMSE), and the timed up and go test (TUG-t), before and 1 month after shunt surgery. Significant differences were observed in DTI parameters from the CS (pFA1 = 0.004, pADC1 = 0.005) and the genu (pFA2 = 0.022; pADC2 = 0.001) and body (pFA3 = 0.003; pADC3 = 0.002) of the CC between the groups. The DTI parameters from the CS were strongly correlated with the MMSE score both pre-operatively and post-operatively. There was association between apparent diffusion coefficient (ADC) values of anterior and posterior limbs of the IC and MMSE. The DTI parameters of the head of the CN were correlated with motion, and the ADC value was significantly associated with the MMSE score. The FA value from TH correlated with an improvement in urination after shunt surgery. We considered that different neuroanatomical structures are affected differently by disease due to their positions in neural pathways and characteristics, which is further reflected in clinical symptoms and the prognosis of shunt surgery.

2020 ◽  
pp. 197140092097515
Author(s):  
Irene Grazzini ◽  
Duccio Venezia ◽  
Gian Luca Cuneo

Idiopathic normal pressure hydrocephalus (iNPH) is a syndrome that comprises a triad of gait disturbance, dementia and urinary incontinence, associated with ventriculomegaly in the absence of elevated intraventricular cerebrospinal fluid (CSF) pressure. It is important to identify patients with iNPH because some of its clinical features may be reversed by the insertion of a CSF shunt. The diagnosis is based on clinical history, physical examination and brain imaging, especially magnetic resonance imaging (MRI). Recently, some papers have investigated the role of diffusion tensor imaging (DTI) in evaluating white matter alterations in patients with iNPH. DTI analysis in specific anatomical regions seems to be a promising MR biomarker of iNPH and could also be used in the differential diagnosis from other dementias. However, there is a substantial lack of structured reviews on this topic. Thus, we performed a literature search and analyzed the most recent and pivotal articles that investigated the role of DTI in iNPH in order to provide an up-to-date overview of the application of DTI in this setting. We reviewed studies published between January 2000 and June 2020. Thirty-eight studies and four reviews were included. Despite heterogeneity in analysis approaches, the majority of studies reported significant correlations between DTI and clinical symptoms in iNPH patients, as well as different DTI patterns in patients with iNPH compared to those with Alzheimer or Parkinson diseases. It remains to be determined whether DTI could predict the success after CSF shunting.


2019 ◽  
Vol 33 (1) ◽  
pp. 66-74
Author(s):  
Irene Grazzini ◽  
Francesco Redi ◽  
Karima Sammartano ◽  
Gian Luca Cuneo

Purpose Diffusion tensor imaging is a magnetic resonance technique that provides information about the orientation and anisotropy of the white matter tracts. The aim of this study was to analyse diffusion tensor imaging quantitative parameters in idiopathic normal pressure hydrocephalus patients, in order to determine whether this method could correlate to clinical scores and cerebrospinal fluid flowmetry data. Methods and materials Fifteen consecutive patients with idiopathic normal pressure hydrocephalus and 15 age-matched controls underwent cerebrospinal fluid flowmetry and diffusion tensor imaging using a 1.5 Tesla system. Fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity values were calculated using region of interest atlas-based tract-mapping in nine cerebral areas and compared among the two groups. In addition, for idiopathic normal pressure hydrocephalus patients, diffusion tensor imaging parameters were correlated to clinical scores (mini mental state examination and frontal assessment battery) and cerebrospinal fluid flowmetry data. Results Mean fractional anisotropy was significantly lower for the idiopathic normal pressure hydrocephalus group than for the control group in the forceps minor and motor cortex; the idiopathic normal pressure hydrocephalus group had significantly higher mean axial diffusivity for the genu of the corpus callosum and forceps minor. We did not find significant correlation between diffusion tensor imaging parameters and cerebrospinal fluid flowmetry and mini mental state examination, while we observed a correlation between forceps minor fractional anisotropy and frontal assessment battery; no correlation between flowmetry and clinical scores was found. Conclusion Our findings suggest that diffusion tensor imaging provides a non-invasive biomarker of white matter changes in idiopathic normal pressure hydrocephalus patients. Forceps minor is the best site to analyse. As diffusion tensor imaging offers a better correlation to clinical status than cerebrospinal fluid flowmetry, it should be included in the routine idiopathic normal pressure hydrocephalus protocol.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hajime Yokota ◽  
Arvind Vijayasarathi ◽  
Milos Cekic ◽  
Yoko Hirata ◽  
Michael Linetsky ◽  
...  

Purpose. To investigate the pathological change of the glymphatic system in idiopathic normal pressure hydrocephalus (iNPH) using diffusion tensor imaging (DTI) analysis. Materials and Methods. 24 right-handed patients were referred to our hydrocephalus clinic for assessment of ventriculomegaly and gait impairment. 12 of 24 were diagnosed as pseudo-iNPH (piNPH) based on assessment by a neurologist. Diffusivity maps in the direction of the x-axis (right-to-left) (Dx), y-axis (anterior-to-posterior) (Dy), and z-axis (inferior-to-superior) (Dz) were computed. The diffusion map was coregistered to International Consortium for Brain Mapping (ICBM) DTI-81 atlas. The analysis along the perivascular space (ALPS) index was defined as mean (Dxpro, Dypro)/mean (Dypro, Dzasc), where Dxpro and Dxasc are Dx values in the projection and association fiber areas, respectively. Evans index and callosal angle were also assessed on each case. Results. ALPS indexes of the control, piNPH, and iNPH cases were 1.18 ± 0.08, 1.08 ± 0.03, and 0.94 ± 0.06, respectively, and there were significant differences among the groups (control vs. piNPH, P = 0.003; control vs. iNPH P < 0.001; piNPH vs. iNPH, P < 0.001). Area under curve (AUC) was 0.92, 1.00, and 1.00 on control vs. piNPH, control vs. iNPH, and piNPH vs. iNPH on ROC analysis. Between piNPH and NPH, ALPS index has higher diagnostic performance than Evans index and callosal angle (AUC = 1.00 vs. 0.84, P = 0.028; AUC = 1.00 vs. 0.74, P = 0.016). Conclusion. Atlas-based ALPS index using the DTI method differentiated among iNPH, piNPH, and controls clearly.


Sign in / Sign up

Export Citation Format

Share Document