scholarly journals Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield

2021 ◽  
Vol 14 ◽  
Author(s):  
Michael Telias ◽  
Dalit Ben-Yosef

The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.

2008 ◽  
Vol 28 (24) ◽  
pp. 7427-7441 ◽  
Author(s):  
Takeshi Shimizu ◽  
Tetsushi Kagawa ◽  
Toshihiro Inoue ◽  
Aya Nonaka ◽  
Shinji Takada ◽  
...  

ABSTRACT The proliferation and differentiation of neural precursor cells are mutually exclusive during brain development. Despite its importance for precursor cell self renewal, the molecular linkage between these two events has remained unclear. Fibroblast growth factor 2 (FGF2) promotes neural precursor cell proliferation and concurrently inhibits their differentiation, suggesting a cross talk between proliferation and differentiation signaling pathways downstream of the FGF receptor. We demonstrate that FGF2 signaling through phosphatidylinositol 3 kinase activation inactivates glycogen synthase kinase 3β (GSK3β) and leads to the accumulation of β-catenin in a manner different from that in the Wnt canonical pathway. The nuclear accumulated β-catenin leads to cell proliferation by activating LEF/TCF transcription factors and concurrently inhibits neuronal differentiation by potentiating the Notch1-RBP-Jκ signaling pathway. β-Catenin and the Notch1 intracellular domain form a molecular complex with the promoter region of the antineurogenic hes1 gene, allowing its expression. This signaling interplay is especially essential for neural stem cell maintenance, since the misexpression of dominant-active GSK3β completely inhibits the self renewal of neurosphere-forming stem cells and prompts their neuronal differentiation. Thus, the GSK3β/β-catenin signaling axis regulated by FGF and Wnt signals plays a pivotal role in the maintenance of neural stem/precursor cells by linking the cell proliferation to the inhibition of differentiation.


2013 ◽  
Vol 394 (12) ◽  
pp. 1623-1636 ◽  
Author(s):  
The Duy Nguyen ◽  
Darius Widera ◽  
Johannes Greiner ◽  
Janine Müller ◽  
Ina Martin ◽  
...  

Abstract Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.


Sign in / Sign up

Export Citation Format

Share Document