scholarly journals Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells

2013 ◽  
Vol 394 (12) ◽  
pp. 1623-1636 ◽  
Author(s):  
The Duy Nguyen ◽  
Darius Widera ◽  
Johannes Greiner ◽  
Janine Müller ◽  
Ina Martin ◽  
...  

Abstract Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.

2021 ◽  
Vol 14 ◽  
Author(s):  
Michael Telias ◽  
Dalit Ben-Yosef

The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E8 ◽  
Author(s):  
Karim Mukhida ◽  
Behnam A. Baghbaderani ◽  
Murray Hong ◽  
Matthew Lewington ◽  
Timothy Phillips ◽  
...  

Object Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity. Furthermore, these cells can be reproducibly expanded in a standardized fashion in suspension bioreactors. In this study the authors sought to determine whether the survival, differentiation, and migration of HNPCs after transplantation depended on the region of precursor cell origin, intracerebral site of transplantation, and duration of their expansion. Methods Human neural precursor cells were isolated from the telencephalon, brainstem, ventral mesencephalon, and spinal cord of human fetuses 8–10 weeks of gestational age, and their differentiation potential characterized in vitro. After expansion in suspension bioreactors, the HNPCs were transplanted into the striatum and substantia nigra of parkinsonian rats. Histological analyses were performed 7 weeks posttransplantation. Results The HNPCs isolated from various regions of the neuraxis demonstrated diverse propensities to differentiate into astrocytes and neurons and could all successfully expand under standardized conditions in suspension bioreactors. At 7 weeks posttransplantation, survival and migration were significantly greater for HNPCs obtained from the more rostral brain regions. The HNPCs differentiated predominantly into astrocytes after transplantation into the striatum or substantia nigra regions, and thus no behavioral improvement was observed. Conclusions Understanding the regional differences in HNPC properties is prerequisite to their application for PD cell restoration strategies.


2021 ◽  
Vol 363 ◽  
pp. 109340
Author(s):  
Abeer Sallam ◽  
Thangirala Sudha ◽  
Noureldien H.E. Darwish ◽  
Samar Eghotny ◽  
Abeer E-Dief ◽  
...  

2008 ◽  
Vol 86 (9) ◽  
pp. 1916-1926 ◽  
Author(s):  
C. Dromard ◽  
H. Guillon ◽  
V. Rigau ◽  
C. Ripoll ◽  
J.C. Sabourin ◽  
...  

2008 ◽  
Vol 108 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Kenichiro Muraoka ◽  
Tetsuro Shingo ◽  
Takao Yasuhara ◽  
Masahiro Kameda ◽  
Wen Ji Yuen ◽  
...  

Object The therapeutic effects of adult and embryonic neural precursor cells (NPCs) were evaluated and their therapeutic potential compared in a rat model of Parkinson disease. Methods Adult NPCs were obtained from the subventricular zone and embryonic NPCs were taken from the ganglionic eminence of 14-day-old embryos. Each NPC type was cultured with epidermal growth factor. The in vitro neuronal differentiation rate of adult NPCs was approximately equivalent to that of embryonic NPCs after two passages. Next, the NPCs were transfected with either green fluorescent protein or glial cell line–derived neurotrophic factor (GDNF) by adenoviral infection and transplanted into the striata in a rat model of Parkinson disease (PD) induced by unilateral intrastriatal injection of 6-hydroxydopamine. An amphetamine-induced rotation test was used to evaluate rat behavioral improvement, and immunohistochemical analysis was performed to compare grafted cell survival, differentiation, and host tissue changes. Results The rats with GDNF-transfected NPCs had significantly fewer amphetamine-induced rotations and less histological damage. Except for the proportion of surviving grafted cells, there were no significant differences between adult and embryonic NPCs. Conclusions Adult and embryonic NPCs have a comparable therapeutic potential in a rat model of PD.


2009 ◽  
pp. NA-NA ◽  
Author(s):  
Mikhal E. Cohen ◽  
Naser Muja ◽  
Nina Fainstein ◽  
Jeff W.M. Bulte ◽  
Tamir Ben-Hur

1993 ◽  
Vol 90 (20) ◽  
pp. 9683-9687 ◽  
Author(s):  
Y. Tomooka ◽  
H. Kitani ◽  
N. Jing ◽  
M. Matsushima ◽  
T. Sakakura

2017 ◽  
Vol 8 (6) ◽  
pp. 1743-1756 ◽  
Author(s):  
Tetsuro Yasui ◽  
Naohiro Uezono ◽  
Hideyuki Nakashima ◽  
Hirofumi Noguchi ◽  
Taito Matsuda ◽  
...  

FEBS Letters ◽  
2008 ◽  
Vol 582 (5) ◽  
pp. 537-542 ◽  
Author(s):  
Chang-Hwan Park ◽  
Jin Sun Kang ◽  
Eun-Hye Yoon ◽  
Jae-Won Shim ◽  
Haeyoung Suh-Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document