scholarly journals Comparative Performance of Linear Multielectrode Probes and Single-Tip Electrodes for Intracortical Microstimulation and Single-Neuron Recording in Macaque Monkey

Author(s):  
Carolina G. Ferroni ◽  
Monica Maranesi ◽  
Alessandro Livi ◽  
Marco Lanzilotto ◽  
Luca Bonini
2003 ◽  
Vol 89 (3) ◽  
pp. 1503-1518 ◽  
Author(s):  
Vassilis Raos ◽  
Gianfranco Franchi ◽  
Vittorio Gallese ◽  
Leonardo Fogassi

The somatotopy of the lateral part of dorsal premotor area F2 has been studied by means of intracortical microstimulation and single neuron recording. The results show that most of this sector of F2 is excitable with low-intensity currents (3–40 μA) and that intracortical microstimulation evokes forelimb and trunk movements. Both proximal and distal forelimb movements are evoked in similar percentages. The proximal and distal forelimb representations partially overlap. However, proximal movements tend to be located more medially (laterally to the superior precentral dimple), whereas distal movements tend to be located more laterally (medially to the spur of the arcuate sulcus). The somatotopic organization demonstrated with microstimulation is confirmed by the similar somatotopic organization of active movements and of somatosensory properties revealed by single-neuron recording. The excitability and somatotopic organization of the lateral part of area F2 are discussed in relation to previous electrophysiological and anatomical findings. The involvement of the distal forelimb representation of area F2 in programming and controlling reaching to grasp movements is suggested.


2009 ◽  
Vol 101 (4) ◽  
pp. 2186-2193 ◽  
Author(s):  
Sam Behseta ◽  
Tamara Berdyyeva ◽  
Carl R. Olson ◽  
Robert E. Kass

When correlation is measured in the presence of noise, its value is decreased. In single-neuron recording experiments, for example, the correlation of selectivity indices in a pair of tasks may be assessed across neurons, but, because the number of trials is limited, the measured index values for each neuron will be noisy. This attenuates the correlation. A correction for such attenuation was proposed by Spearman more than 100 yr ago, and more recent work has shown how confidence intervals may be constructed to supplement the correction. In this paper, we propose an alternative Bayesian correction. A simulation study shows that this approach can be far superior to Spearman's, both in accuracy of the correction and in coverage of the resulting confidence intervals. We demonstrate the usefulness of this technology by applying it to a set of data obtained from the frontal cortex of a macaque monkey while performing serial order and variable reward saccade tasks. There the correction results in a substantial increase in the correlation across neurons in the two tasks.


1988 ◽  
Vol 59 (3) ◽  
pp. 796-818 ◽  
Author(s):  
C. S. Huang ◽  
M. A. Sirisko ◽  
H. Hiraba ◽  
G. M. Murray ◽  
B. J. Sessle

1. The technique of intracortical microstimulation (ICMS), supplemented by single-neuron recording, was used to carry out an extensive mapping of the face primary motor cortex. The ICMS study involved a total of 969 microelectrode penetrations carried out in 10 unanesthetized monkeys (Macaca fascicularis). 2. Monitoring of ICMS-evoked movements and associated electromyographic (EMG) activity revealed a general pattern of motor cortical organization. This was characterized by a representation of the facial musculature, which partially enclosed and overlapped the rostral, medial, and caudal borders of the more laterally located cortical regions representing the jaw and tongue musculatures. Responses were evoked at ICMS thresholds as low as 1 microA, and the latency of the suprathreshold EMG responses ranged from 10 to 45 ms. 3. Although contralateral movements predominated, a representation of ipsilateral movements was found, which was much more extensive than previously reported and which was intermingled with the contralateral representations in the anterior face motor cortex. 4. In examining the fine organizational pattern of the representations, we found clear evidence for multiple representation of a particular muscle, thus supporting other investigations of the motor cortex, which indicate that multiple, yet discrete, efferent microzones represent an essential organizational principle of the motor cortex. 5. The close interrelationship of the representations of all three muscle groups, as well as the presence of a considerable ipsilateral representation, may allow for the necessary integration of unilateral or bilateral activities of the numerous face, jaw, and tongue muscles, which is a feature of many of the movement patterns in which these various muscles participate. 6. In six of these same animals, plus an additional two animals, single-neuron recordings were made in the motor and adjacent sensory cortices in the anesthetized state. These neurons were electrophysiologically identified as corticobulbar projection neurons or as nonprojection neurons responsive to superficial or deep orofacial afferent inputs. The rostral, medial, lateral, and caudal borders of the face motor cortex were delineated with greater definition by ICMS and these electrophysiological procedures than by cytoarchitectonic features alone. We noted that there was an approximate fit in area 4 between the extent of projection neurons and field potentials anti-dromically evoked from the brain stem and the extent of positive ICMS sites.(ABSTRACT TRUNCATED AT 400 WORDS)


Cortex ◽  
2014 ◽  
Vol 60 ◽  
pp. 3-9 ◽  
Author(s):  
Elisa Frisaldi ◽  
Elisa Carlino ◽  
Michele Lanotte ◽  
Leonardo Lopiano ◽  
Fabrizio Benedetti

2004 ◽  
Vol 51 (4) ◽  
pp. 647-656 ◽  
Author(s):  
K.A. Moxon ◽  
S. Leiser ◽  
G.A. Gerhardt ◽  
K.A. Barbee ◽  
J.K. Chapin

Sign in / Sign up

Export Citation Format

Share Document