scholarly journals Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets

2021 ◽  
Vol 2 ◽  
Author(s):  
Sascha R. A. Alles ◽  
Peter A. Smith

The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing “pain” as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.

2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Osvaldo J.M. Nascimento ◽  
Bruno L. Pessoa ◽  
Marco Orsini ◽  
Pedro Ribeiro ◽  
Eduardo Davidovich ◽  
...  

Neuropathic pain (NP) is the result of a series of conditions caused by diseases or lesions to the somatosensory system. Due to the better understanding of NP pathophysiology previously unexplored therapies have been used with encouraging results. In this group, acetyl-L-carnitine, alpha-lipoic-acid, cannabinoids, clonidine, EMA401, botulinum toxin type A and new voltage-gated sodium channel blockers, can be included. Besides, changing paradigms may occur with the advent of optogenetics and a better understanding of epigenetic regulation. We reviewed the published literature on the pharmacological treatment of NP. Despite the interesting results, randomized controlled trials are demanded the majority of the therapies previously mentioned. In spite of several studies for the relief of NP, pain control continues being a challenge.


2003 ◽  
Vol 2 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Robert A. Sikes ◽  
Alison M. Walls ◽  
W. Nathaniel Brennen ◽  
James D. Anderson ◽  
Indrani Choudhury-Mukherjee ◽  
...  

2000 ◽  
Vol 278 (6) ◽  
pp. F1013-F1021 ◽  
Author(s):  
Rainer Lang ◽  
George Lee ◽  
Weimin Liu ◽  
Shulan Tian ◽  
Hamid Rafi ◽  
...  

Our laboratory previously cloned a novel rabbit gene ( Kcn1), expressed in kidney, heart, and aorta, and predicted to encode a protein with 58% amino acid identity with the K channel Shaker Kv1.3 (Yao X et al. Proc Natl Acad Sci USA 92: 11711–11715, 1995). Because Kcn1 did not express well (peak current in Xenopus laevis oocytes of 0.3 μA at +60 mV), the human homolog (KCNA10) was isolated, and its expression was optimized in oocytes. KCNA10 mediates voltage-gated K+currents that exhibit minimal steady-state inactivation. Ensemble currents of 5–10 μA at +40 mV were consistently recorded from injected oocytes. Channels are closed at the holding potential of −80 mV but are progressively activated by depolarizations more positive than −30 mV, with half-activation at +3.5 ± 2.5 mV. The channel displays an unusual inhibitor profile because, in addition to being blocked by classical K channel blockers (barium tetraethylammonium and 4-aminopyridine), it is also sensitive to inhibitors of cyclic nucleotide-gated (CNG) cation channels (verapamil and pimozide). Tail-current analysis shows a reversal potential shift of 47 mV/decade change in K concentration, indicating a K-to-Na selectivity ratio of at least 15:1. The phorbol ester phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibited whole cell current by 42%. Analysis of single-channel currents reveals a conductance of ∼11 pS. We conclude KCNA10 is a novel human voltage-gated K channel with features common to both K-selective and CNG cation channels. Given its distribution in renal blood vessels and heart, we speculate that KCNA10 may be involved in regulating the tone of renal vascular smooth muscle and may also participate in the cardiac action potential.


2019 ◽  
Vol 25 (25) ◽  
pp. 2697-2715 ◽  
Author(s):  
Pran Kishore Deb ◽  
Satyendra Deka ◽  
Pobitra Borah ◽  
Sara N. Abed ◽  
Karl-Norbert Klotz

Adenosine is a purine nucleoside, responsible for the regulation of a wide range of physiological and pathophysiological conditions by binding with four G-protein-coupled receptors (GPCRs), namely A1, A2A, A2B and A3 adenosine receptors (ARs). In particular, A1 AR is ubiquitously present, mediating a variety of physiological processes throughout the body, thus represents a promising drug target for the management of various pathological conditions. Agonists of A1 AR are found to be useful for the treatment of atrial arrhythmia, angina, type-2 diabetes, glaucoma, neuropathic pain, epilepsy, depression and Huntington’s disease, whereas antagonists are being investigated for the treatment of diuresis, congestive heart failure, asthma, COPD, anxiety and dementia. However, treatment with full A1 AR agonists has been associated with numerous challenges like cardiovascular side effects, off-target activation as well as desensitization of A1 AR leading to tachyphylaxis. In this regard, partial agonists of A1 AR have been found to be beneficial in enhancing insulin sensitivity and subsequently reducing blood glucose level, while avoiding severe CVS side effects and tachyphylaxis. Allosteric enhancer of A1 AR is found to be potent for the treatment of neuropathic pain, culminating the side effects related to off-target tissue activation of A1 AR. This review provides an overview of the medicinal chemistry and therapeutic potential of various agonists/partial agonists, antagonists and allosteric modulators of A1 AR, with a particular emphasis on their current status and future perspectives in clinical settings.


2020 ◽  
Vol 29 (3) ◽  
pp. 259-271 ◽  
Author(s):  
Mikhail Kushnarev ◽  
Iulia Paula Pirvulescu ◽  
Kenneth D. Candido ◽  
Nebojsa Nick Knezevic

Sign in / Sign up

Export Citation Format

Share Document