scholarly journals The Effect of Solar-Wind Turbulence on Magnetospheric Activity

2020 ◽  
Vol 8 ◽  
Author(s):  
R. D’Amicis ◽  
D. Telloni ◽  
R. Bruno

The solar wind is a highly turbulent medium exhibiting scalings of the fluctuations ranging over several decades of scales from the correlation length down to proton and electron gyroradii, thus suggesting a self-similar nature for these fluctuations. During its journey, the solar wind encounters the region of space surrounding Earth dominated by the geomagnetic field which is called magnetosphere. The latter is exposed to the continuous buffeting of the solar wind which determines its characteristic comet-like shape. The solar wind and the magnetosphere interact continously, thus constituting a coupled system, since perturbations in the interplanetary medium cause geomagnetic disturbances. However, strong variations in the geomagnetic field occur even in absence of large solar perturbations. In this case, a major role is attributed to solar wind turbulence as a driver of geomagnetic activity especially at high latitudes. In this review, we report about the state-of-art related to this topic. Since the solar wind and the magnetosphere are both high Reynolds number plasmas, both follow a scale-invariant dynamics and are in a state far from equilibrium. Moreover, the geomagnetic response, although closely related to the changes of the interplanetary magnetic field condition, is also strongly affected by the intrinsic dynamics of the magnetosphere generated by geomagnetic field variations caused by the internal conditions.

2016 ◽  
Vol 116 (12) ◽  
Author(s):  
C. Perschke ◽  
Y. Narita ◽  
U. Motschmann ◽  
K. H. Glassmeier

2018 ◽  
Vol 867 (2) ◽  
pp. 168 ◽  
Author(s):  
Andrea Verdini ◽  
Roland Grappin ◽  
Olga Alexandrova ◽  
Sonny Lion

2017 ◽  
Vol 846 (2) ◽  
pp. L18 ◽  
Author(s):  
Silvio Sergio Cerri ◽  
Sergio Servidio ◽  
Francesco Califano

2020 ◽  
Vol 900 (2) ◽  
pp. 94 ◽  
Author(s):  
Zackary B. Pine ◽  
Charles W. Smith ◽  
Sophia J. Hollick ◽  
Matthew R. Argall ◽  
Bernard J. Vasquez ◽  
...  

New Astronomy ◽  
2021 ◽  
Vol 83 ◽  
pp. 101507
Author(s):  
Sean Oughton ◽  
N. Eugene Engelbrecht

2007 ◽  
Vol 25 (5) ◽  
pp. 1183-1197 ◽  
Author(s):  
M. L. Parkinson ◽  
R. C. Healey ◽  
P. L. Dyson

Abstract. Multi-scale structure of the solar wind in the ecliptic at 1 AU undergoes significant evolution with the phase of the solar cycle. Wind spacecraft measurements during 1995 to 1998 and ACE spacecraft measurements during 1997 to 2005 were used to characterise the evolution of small-scale (~1 min to 2 h) fluctuations in the solar wind speed vsw, magnetic energy density B2, and solar wind ε parameter, in the context of large-scale (~1 day to years) variations. The large-scale variation in ε most resembled large-scale variations in B2. The probability density of large fluctuations in ε and B2 both had strong minima during 1995, a familiar signature of solar minimum. Generalized Structure Function (GSF) analysis was used to estimate inertial range scaling exponents aGSF and their evolution throughout 1995 to 2005. For the entire data set, the weighted average scaling exponent for small-scale fluctuations in vsw was aGSF=0.284±0.001, a value characteristic of intermittent MHD turbulence (>1/4), whereas the scaling exponents for corresponding fluctuations in B2 and ε were aGSF=0.395±0.001 and 0.334±0.001, respectively. These values are between the range expected for Gaussian fluctuations (1/2) and Kolmogorov turbulence (1/3). However, the scaling exponent for ε changed from a Gaussian-Kolmogorov value of 0.373±0.005 during 1997 (end of solar minimum) to an MHD turbulence value of 0.247±0.004 during 2003 (recurrent fast streams). Changes in the characteristics of solar wind turbulence may be reproducible from one solar cycle to the next.


2014 ◽  
Vol 793 (2) ◽  
pp. L25 ◽  
Author(s):  
Christopher Perschke ◽  
Yasuhito Narita ◽  
Uwe Motschmann ◽  
Karl-Heinz Glassmeier

Sign in / Sign up

Export Citation Format

Share Document