scholarly journals Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius

2017 ◽  
Vol 8 ◽  
Author(s):  
Feng Liu ◽  
Xiaoming Xia ◽  
Nannan Liu
Author(s):  
Raymond Berry

AbstractThe bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Sudip Gaire ◽  
Michael Scharf ◽  
Ameya Gondhalekar

Management of the common bed bug (Cimex lectularius L.) necessitates the use of multiple control techniques. In addition to synthetic pesticides and mechanical interventions, plant-derived essential oils represent one of the control options. Mixtures of two or more essential oil components (monoterpenoids) exhibit synergistic toxicity effects against insects due to increased cuticular penetration. Monoterpenoids, such as carvacrol, eugenol and thymol, are neurologically active and inhibit the nerve firing activity of C. lectularius. However, the effects of mixtures of these monoterpenoids on their toxicity and neuroinhibitory potential against C. lectularius are not known. In this study, the toxicity levels of a tertiary mixture of carvacrol, eugenol and thymol (1:1:1 ratio) and a binary mixture of synthetic insecticides, bifenthrin and imidacloprid (1:1 ratio) were evaluated against C. lectularius through topical bioassays and electrophysiology experiments. Both a mixture of monoterpenoids and the mixture of synthetic insecticides exhibited synergistic effects in topical bioassays. In electrophysiology experiments, the monoterpenoid mixture led to greater neuroinhibitory effects, whereas a mixture of synthetic insecticides caused higher neuroexcitatory effects in comparison to single compounds. This study shows evidence for neurological mechanisms of synergistic interactions between monoterpenoids and provides information regarding the utilization of natural compound mixtures for C. lectularius management.


2018 ◽  
Vol 98 (3) ◽  
pp. 724-734 ◽  
Author(s):  
Jennifer K. Peterson ◽  
Renzo Salazar ◽  
Ricardo Castillo-Neyra ◽  
Katty Borrini-Mayori ◽  
Carlos Condori ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael L. Fisher ◽  
Jay F. Levine ◽  
James S. Guy ◽  
Hiroyuki Mochizuki ◽  
Matthew Breen ◽  
...  

Abstract Background The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius. Methods We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia. Results There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups. Conclusions These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.


2020 ◽  
Vol 76 (9) ◽  
pp. 3108-3116 ◽  
Author(s):  
James Feston ◽  
Sudip Gaire ◽  
Mahsa Fardisi ◽  
Linda J Mason ◽  
Ameya D Gondhalekar

2019 ◽  
Vol 56 (4) ◽  
pp. 903-906 ◽  
Author(s):  
Fariba Berenji ◽  
Ali Moshaverinia ◽  
Abbas Jadidoleslami ◽  
Aliakbar Shamsian ◽  
Stephen L Doggett ◽  
...  

Abstract The common bed bug, Cimex lectularius (Linnaeus 1758), is a nocturnal blood-sucking ectoparasite of humans that is highly prevalent in the northeast of Iran. In recent years, the efficacy of those insecticides that have been frequently used to control bed bugs in Iran has not been studied. Due to frequent complaints about bed bug treatment failures in Mashhad city (northeastern Iran), this study assessed the susceptibility of C. lectularius collected from a student residence hall to Diazinon, Malathion, and λ-cyhalothrin. The desired concentrations of each insecticide were prepared in acetone, and bioassays were performed using insecticide-impregnated filter paper method. The concentration–response data were subjected to POLO-PC software and data were analyzed by the log-probit procedure. The LC50 values of Diazinon and λ-cyhalothrin for examined bed bugs were 1,337.40 and 2,022.36 ppm, respectively. Malathion at the highest concentration (10,000 ppm) did not exhibit any toxicity to examined C. lectularius. Comparing these results to the same previous studies showed that susceptibility of examined bed bugs to these insecticides has been highly decreased. This study revealed an occurrence of insecticide resistance in bed bug populations in northeastern Iran. It also suggests that Malathion, Diazinon, and λ-cyhalothrin are ineffective against bed bugs in this region.


Sign in / Sign up

Export Citation Format

Share Document