Determining baseline toxicity of ozone against an insecticide‐susceptible strain of the common bed bug, Cimex lectularius L. under laboratory conditions

2020 ◽  
Vol 76 (9) ◽  
pp. 3108-3116 ◽  
Author(s):  
James Feston ◽  
Sudip Gaire ◽  
Mahsa Fardisi ◽  
Linda J Mason ◽  
Ameya D Gondhalekar
Author(s):  
Raymond Berry

AbstractThe bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Sudip Gaire ◽  
Michael Scharf ◽  
Ameya Gondhalekar

Management of the common bed bug (Cimex lectularius L.) necessitates the use of multiple control techniques. In addition to synthetic pesticides and mechanical interventions, plant-derived essential oils represent one of the control options. Mixtures of two or more essential oil components (monoterpenoids) exhibit synergistic toxicity effects against insects due to increased cuticular penetration. Monoterpenoids, such as carvacrol, eugenol and thymol, are neurologically active and inhibit the nerve firing activity of C. lectularius. However, the effects of mixtures of these monoterpenoids on their toxicity and neuroinhibitory potential against C. lectularius are not known. In this study, the toxicity levels of a tertiary mixture of carvacrol, eugenol and thymol (1:1:1 ratio) and a binary mixture of synthetic insecticides, bifenthrin and imidacloprid (1:1 ratio) were evaluated against C. lectularius through topical bioassays and electrophysiology experiments. Both a mixture of monoterpenoids and the mixture of synthetic insecticides exhibited synergistic effects in topical bioassays. In electrophysiology experiments, the monoterpenoid mixture led to greater neuroinhibitory effects, whereas a mixture of synthetic insecticides caused higher neuroexcitatory effects in comparison to single compounds. This study shows evidence for neurological mechanisms of synergistic interactions between monoterpenoids and provides information regarding the utilization of natural compound mixtures for C. lectularius management.


2018 ◽  
Vol 98 (3) ◽  
pp. 724-734 ◽  
Author(s):  
Jennifer K. Peterson ◽  
Renzo Salazar ◽  
Ricardo Castillo-Neyra ◽  
Katty Borrini-Mayori ◽  
Carlos Condori ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael L. Fisher ◽  
Jay F. Levine ◽  
James S. Guy ◽  
Hiroyuki Mochizuki ◽  
Matthew Breen ◽  
...  

Abstract Background The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius. Methods We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia. Results There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups. Conclusions These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.


2019 ◽  
Vol 56 (4) ◽  
pp. 903-906 ◽  
Author(s):  
Fariba Berenji ◽  
Ali Moshaverinia ◽  
Abbas Jadidoleslami ◽  
Aliakbar Shamsian ◽  
Stephen L Doggett ◽  
...  

Abstract The common bed bug, Cimex lectularius (Linnaeus 1758), is a nocturnal blood-sucking ectoparasite of humans that is highly prevalent in the northeast of Iran. In recent years, the efficacy of those insecticides that have been frequently used to control bed bugs in Iran has not been studied. Due to frequent complaints about bed bug treatment failures in Mashhad city (northeastern Iran), this study assessed the susceptibility of C. lectularius collected from a student residence hall to Diazinon, Malathion, and λ-cyhalothrin. The desired concentrations of each insecticide were prepared in acetone, and bioassays were performed using insecticide-impregnated filter paper method. The concentration–response data were subjected to POLO-PC software and data were analyzed by the log-probit procedure. The LC50 values of Diazinon and λ-cyhalothrin for examined bed bugs were 1,337.40 and 2,022.36 ppm, respectively. Malathion at the highest concentration (10,000 ppm) did not exhibit any toxicity to examined C. lectularius. Comparing these results to the same previous studies showed that susceptibility of examined bed bugs to these insecticides has been highly decreased. This study revealed an occurrence of insecticide resistance in bed bug populations in northeastern Iran. It also suggests that Malathion, Diazinon, and λ-cyhalothrin are ineffective against bed bugs in this region.


1914 ◽  
Vol 5 (2) ◽  
pp. 111-117 ◽  
Author(s):  
A. W. Bacot

These experiments were performed in response to a question submitted to me from the Royal Sanitary Institute. The point at issue was the possibility of eggs of the common bed-bug, Cimex lectularius, surviving the process of house-destruction, when the plaster from old walls, on which eggs had been laid, was broken down and remixed with fresh mortar for making the partitions of rooms in new tenements; such survival having been given as an explanation for previously unoccupied houses being infested with bugs.


Author(s):  
Panupong Thongprem ◽  
Sophie EF Evison ◽  
Gregory DD Hurst ◽  
Oliver Otti

ABSTRACTThe torix group of Rickettsia have been recorded from a wide assemblage of invertebrates, but details of transmission and biological impacts on the host have rarely been established. The common bed bug (Cimex lectularius) is a hemipteran insect which lives as an obligatory hematophagous pest of humans and is host to a primary Wolbachia symbiont and two facultative symbionts, a BEV-like symbiont, and a torix group Rickettsia. In this study, we first note the presence of a single Rickettsia strain in multiple laboratory bed bug isolates derived from Europe and Africa. Importantly, we discovered that the Rickettsia has segregated in two laboratory strains, providing infected and uninfected isogenic lines for this study. Crosses with these lines established transmission was purely maternal, in contrast to previous studies of torix infections in planthoppers where paternal infection status was also important. Fluorescence in-situ hybridization analysis indicates Rickettsia infected in oocytes and bacteriomes, and other somatic tissues. There was no evidence that Rickettsia infection was associated with sex ratio distortion activity, but Rickettsia infected individuals developed from first instar to adult more slowly. The impact of Rickettsia on fecundity and fertility were investigated. Rickettsia infected females produced fewer fertile eggs, but there was no evidence for cytoplasmic incompatibility. These data imply the existence of an unknown benefit to C. lectularius carrying Rickettsia that awaits further research.


2019 ◽  
Vol 57 (1) ◽  
pp. 187-191 ◽  
Author(s):  
Nicholas R Larson ◽  
Aijun Zhang ◽  
Mark F Feldlaufer

Abstract Common bed bug Cimex lectularius (L.) (Hemiptera: Cimicidae) infestations are on the rise and due to the development of pesticide resistance they are becoming more difficult to control, affordably. We evaluated a naturally occurring compound methyl benzoate (MB) and related analogs, previously reported to have insecticidal activity on several agricultural pests, for its fumigant action on the common bed bug, C. lectularius L. A discriminating concentration was used to determine the effectiveness of MB, and several of its analogs as fumigants in a laboratory assay. It was found that MB provided >90% control of adult bed bugs in this laboratory fumigant assay. LC50 values were calculated for MB against both a pyrethroid-susceptible and a pyrethroid-resistant strain of common bed bugs. It was determined that both strains were susceptible in this laboratory assay. However, when MB was tested in a field-like assay and compared to a commercially available bed bug control product, it was found to be significantly less effective compared to the commercial product. Our study has found that while MB has the potential to be used as a bed bug control agent, refinements in the delivery system will be needed to increase efficacy under field-like conditions.


Sign in / Sign up

Export Citation Format

Share Document