scholarly journals Theoretical Bases for the Role of Red Blood Cell Shape in the Regulation of Its Volume

2020 ◽  
Vol 11 ◽  
Author(s):  
Saša Svetina
Keyword(s):  
Author(s):  
Saša Svetina

AbstractIt is proposed that it is possible to identify some of the problems that had to be solved in the course of evolution for the red blood cell (RBC) to achieve its present day effectiveness, by studying the behavior of systems featuring different, partial characteristics of its membrane. The appropriateness of the RBC volume to membrane area ratio for its circulation in the blood is interpreted on the basis of an analysis of the shape behavior of phospholipid vesicles. The role of the membrane skeleton is associated with preventing an RBC from transforming into a budded shape, which could form in its absence due to curvature-dependent transmembrane protein-membrane interaction. It is shown that, by causing the formation of echinocytes, the skeleton also acts protectively when, in vesicles with a bilayer membrane, the budded shapes would form due to increasing difference between the areas of their outer and inner layers.


2017 ◽  
Vol 82 (6) ◽  
pp. 894-896
Author(s):  
Jean L Raphael ◽  

2017 ◽  
Vol 398 (3) ◽  
pp. 319-329 ◽  
Author(s):  
Christine C. Helms ◽  
Xiaohua Liu ◽  
Daniel B. Kim-Shapiro

Abstract Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.


1982 ◽  
Vol 100 (3) ◽  
pp. 449-453 ◽  
Author(s):  
Lise Riopel ◽  
Jean-Claude Fouron ◽  
Harry Bard

2020 ◽  
pp. 401-421
Author(s):  
Brian S. Bull ◽  
Douglas Brailsford
Keyword(s):  

1982 ◽  
Vol 101 (1) ◽  
pp. 47-60 ◽  
Author(s):  
STEVE F. PERRY ◽  
PETER S. DAVIE ◽  
DAVID J. RANDALL

A spontaneously ventilating blood-perfused trout preparation and saline perfused gill preparations were utilized to investigate the role of the erythrocyte and branchial epithelium in CO2 excretion and acid-base regulation. CO, excretion (MCOCO2) in blood-perfused preparations was positively correlated with haematocrit (Hct), and was abolished completely during plasma-perfusion. Elevating HCO3- concentration of input blood from 10 to 25 mM significantly increased MCOCO2. fourfold in blood-perfused preparations as a result of increased entry of HCO into the red blood cell and not into the gill epithelium. Increased HCO3- concentration was without effect in totally saline-perfused coho salmon (Onchorynchus kisutch). The addition of 4-acetamido-4′-wo-thiocyanatostilbene-2, 2 disulfonic acid (SITS; 10−4 M) to input blood significantly reduced MCO, and oxygen uptake (Mg,OO2) in blood-perfused fish due to inhibition of erythrocytic HCO3-exchange. Unlike blood-perfused preparations, no saline-perfused preparation (isolated holobranchs or totally perfused rainbow trout or coho salmon) displayed measureable CO, excretion at physiological Pco and pH. Increased input PCOt in both blood-perfused and saline-perfused preparations significantly increased MCOt due to enhanced branchial diffusion of molecular CO2. It is concluded that the entry of HCO3- into the erythrocyte is the rate-limiting step in CO, excretion and that movement of HCO3- from plasma to gill epithelium cells in no way contributes to overall CO3 elimination. Note: Department of Physiology and Anatomy, Massey University Palmerston North, New Zealand. Pacific Gamefish Foundation, P.O. Box 25115, Honolulu, Hawaii, U.S.A. 96825


Sign in / Sign up

Export Citation Format

Share Document