scholarly journals Anaerobic Capacity in Running: The Effect of Computational Method

2021 ◽  
Vol 12 ◽  
Author(s):  
Erik P. Andersson ◽  
Glenn Björklund ◽  
Kerry McGawley

IntroductionTo date, no study has compared anaerobic capacity (AnC) estimates computed with the maximal accumulated oxygen deficit (MAOD) method and the gross energy cost (GEC) method applied to treadmill running exercise.PurposeFour different models for estimating anaerobic energy supply during treadmill running exercise were compared.MethodsFifteen endurance-trained recreational athletes performed, after a 10-min warm-up, five 4-min stages at ∼55–80% of peak oxygen uptake, and a 4-min time trial (TT). Two linear speed-metabolic rate (MR) regression models were used to estimate the instantaneous required MR during the TT (MRTT_req), either including (5+YLIN) or excluding (5-YLIN) a measured Y-intercept. Also, the average GEC (GECAVG) based on all five submaximal stages, or the GEC based on the last submaximal stage (GECLAST), were used as models to estimate the instantaneous MRTT_req. The AnC was computed as the difference between the MRTT_req and the aerobic MR integrated over time.ResultsThe GEC remained constant at ∼4.39 ± 0.29 J⋅kg–1⋅m–1 across the five submaximal stages and the TT was performed at a speed of 4.7 ± 0.4 m⋅s–1. Compared with the 5-YLIN, GECAVG, and GECLAST models, the 5+YLIN model generated a MRTT_req that was ∼3.9% lower, with corresponding anaerobic capacities from the four models of 0.72 ± 0.20, 0.74 ± 0.16, 0.74 ± 0.15, and 0.54 ± 0.14 kJ⋅kg–1, respectively (F1.07,42 = 13.9, P = 0.002). The GEC values associated with the TT were 4.22 ± 0.27 and 4.37 ± 0.30 J⋅kg–1⋅m–1 for 5+YLIN and 5-YLIN, respectively (calculated from the regression equation), and 4.39 ± 0.28 and 4.38 ± 0.27 J⋅kg–1⋅m–1 for GECAVG and GECLAST, respectively (F1.08,42 = 14.6, P < 0.001). The absolute typical errors in AnC ranged between 0.03 and 0.16 kJ⋅kg–1 for the six pair-wise comparisons and the overall standard error of measurement (SEM) was 0.16 kJ⋅kg–1.ConclusionThese findings demonstrate a generally high disagreement in estimated anaerobic capacities between models and show that the inclusion of a measured Y-intercept in the linear regression (i.e., 5+YLIN) is likely to underestimate the MRTT_req and the GEC associated with the TT, and hence the AnC during maximal 4-min treadmill running.

1996 ◽  
Vol 21 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Neil S. Maxwell ◽  
Myra A. Nimmo

The present investigation evaluates a maximal anaerobic running test (MART) against the maximal accumulated oxygen deficit (MAOD) for the determination of anaerobic capacity. Essentially, this involved comparing 18 male students performing two randomly assigned supramaximal runs to exhaustion on separate days. Post warm-up and 1, 3, and 6 min postexercise capillary blood samples were taken during both tests for plasma blood lactate (BLa) determination. In the MART only, blood ammonia (BNH3) concentration was measured, while capillary blood samples were additionally taken after every second sprint for BLa determination. Anaerobic capacity, measured as oxygen equivalents in the MART protocol, averaged 112.2 ± 5.2 ml∙kg−1∙min−1. Oxygen deficit, representing the anaerobic capacity in the MAOD test, was an average of 74.6 ± 7.3 ml∙kg−1. There was a significant correlation between the MART and MAOD (r =.83, p <.001). BLa values obtained over time in the two tests showed no significant difference, nor was there any difference in the peak BLa recorded. Peak BNH3 concentration recorded was significantly increased from resting levels at exhaustion during the MART. Key words: supramaximal intermittent exercise, treadmill running performance, blood lactate, ammonia


1997 ◽  
Vol 83 (1) ◽  
pp. 262-269 ◽  
Author(s):  
Mark A. Sloniger ◽  
Kirk J. Cureton ◽  
Barry M. Prior ◽  
Ellen M. Evans

Sloniger, Mark A., Kirk J. Cureton, Barry M. Prior, and Ellen M. Evans. Anaerobic capacity and muscle activation during horizontal and uphill running. J. Appl. Physiol. 83(1): 262–269, 1997.—Anaerobic capacity as measured by the maximal or peak oxygen deficit is greater during uphill than during horizontal running. The objective of this study was to determine whether the greater peak oxygen deficit determined during uphill compared with horizontal running is related to greater muscle volume or mass activated in the lower extremity. The peak oxygen deficit in 12 subjects was determined during supramaximal treadmill running at 0 and 10% grade. Exercise-induced contrast shifts in magnetic resonance images were obtained before and after exercise and used to determine the percentage of muscle volume activated. The mean peak oxygen deficit determined for uphill running [2.96 ± 0.63 (SD) liters or 49 ± 6 ml/kg] was significantly greater ( P < 0.05) than for horizontal running (2.45 ± 0.51 liters or 41 ± 7 ml/kg) by 21%. The mean percentage of muscle volume activated for uphill running [73.1 ± 7.4% (SD)] was significantly greater ( P < 0.05) than for horizontal running (67.0 ± 8.3%) by 9%. The differences in peak oxygen deficit (liters) between uphill and horizontal running were significantly related ( y = 8.05 × 10−4 x + 0.35; r = 0.63, SE of estimate = 0.29 liter, P < 0.05) to the differences in the active muscle volume (cm3) in the lower extremity. We conclude that the higher peak oxygen deficit during uphill compared with horizontal running is due in part to increased mass of skeletal muscle activated in the lower extremity.


2009 ◽  
Vol 27 (10) ◽  
pp. 1373-1378 ◽  
Author(s):  
Michal Szczodry ◽  
Jianying Zhang ◽  
Chanteak Lim ◽  
Hongxia L. Davitt ◽  
Torin Yeager ◽  
...  

2012 ◽  
Vol 7 (4) ◽  
pp. 382-389 ◽  
Author(s):  
Daniel A. Keir ◽  
Raphaël Zory ◽  
Céline Boudreau-Larivière ◽  
Olivier Serresse

Objectives:Mechanical efficiency (ME) describes the ratio between mechanical (PMECH) and metabolic (PMET) power. The purpose of the study was to include an estimation of anaerobic energy expenditure (AnE) into the quantification of PMET using the accumulated oxygen deficit (AOD) and to examine its effect on the value of ME in treadmill running at submaximal, maximal, and supramaximal running speeds.Methods:Participants (N = 11) underwent a graded maximal exercise test to determine velocity at peak oxygen uptake (vVO2peak). On 4 separate occasions, subjects ran for 6 min at speeds corresponding to 50%, 70%, 90%, and 110% of vVO2peak. During each testing session, PMET was measured from pulmonary oxygen uptake (VO2p) using opencircuit spirometry and was quantified in 2 ways: from VO2p and an estimate of AnE (from the AOD method) and from VO2p only. PMECH was determined from kinematic analyses.Results:ME at 50%, 70%, 90%, and 110% of vVO2peak was 59.9% ± 11.9%, 55.4% ± 12.2%, 51.5% ± 6.8%, and 52.9% ± 7.5%, respectively, when AnE was included in the calculation of PMET. The exclusion of AnE yielded significantly greater values of ME at all speeds: 62.9% ± 11.4%, 62.4% ± 12.6%, 55.1% ± 6.2%, and 64.2% ± 8.4%; P = .001 (for 50%, 70%, 90%, and 110% of vVO2peak, respectively).Conclusions:The data suggest that an estimate of AnE should be considered in the computation of PMET when determining ME of treadmill running, as its exclusion leads to overestimations of ME values.


Sign in / Sign up

Export Citation Format

Share Document