scholarly journals Differential Regulation of the Asthmatic Phenotype by the Aryl Hydrocarbon Receptor

2021 ◽  
Vol 12 ◽  
Author(s):  
Hussein Traboulsi ◽  
Angela Rico de Souza ◽  
Benoit Allard ◽  
Zahraa Haidar ◽  
Mark Sorin ◽  
...  

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the metabolism of xenobiotics. There is growing evidence that the AhR is implicated in physiological processes such proliferation, differentiation, and immune responses. Recently, a role of the AhR in regulating allergic asthma has been suggested, but whether the AhR also regulates other type of asthma, particularly occupational/irritant-induced asthma, remains unknown. Using AhR-deficient (Ahr−/−) mice, we compared the function of the AhR in the response to ovalbumin (OVA; allergic asthma) vs. chlorine (Cl2; irritant-induced asthma) exposure. Lung inflammation and airway hyperresponsiveness were assessed 24h after exposure to Cl2 or OVA challenge in Ahr−/− and heterozygous (Ahr+/−) mice. After OVA challenge, absence of AhR was associated with significantly enhanced eosinophilia and lymphocyte influx into the airways of Ahr−/− mice. There were also increased levels of interleukin-4 (IL-4) and IL-5 in the airways. However, OVA-induced airway hyperresponsiveness was not affected. In the irritant-induced asthma model caused by exposure to Cl2, the AhR did not regulate the inflammatory response. However, absence of AhR reduced Cl2-induced airway hyperresponsiveness. Collectively, these results support a differential role for the AhR in regulating asthma outcomes in response to diverse etiological agents.

2021 ◽  
pp. 2100539
Author(s):  
Robert S. Chapkin ◽  
Laurie A. Davidson ◽  
Hyejin Park ◽  
Un‐Ho Jin ◽  
Yang‐Yi Fan ◽  
...  

Inflammation ◽  
2013 ◽  
Vol 37 (2) ◽  
pp. 387-395 ◽  
Author(s):  
Ping Wei ◽  
Guo-hua Hu ◽  
Hou-yong Kang ◽  
Hong-bing Yao ◽  
Wei Kou ◽  
...  

2020 ◽  
Author(s):  
Michelle M Lissner ◽  
Katherine Cumnock ◽  
Nicole M Davis ◽  
José G Vilches-Moure ◽  
Priyanka Basak ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9460
Author(s):  
Helmut Segner ◽  
Christyn Bailey ◽  
Carolina Tafalla ◽  
Jun Bo

The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.


2016 ◽  
Vol 23 (8) ◽  
pp. 960-975 ◽  
Author(s):  
Shunsuke Ito ◽  
Mizuko Osaka ◽  
Takeo Edamatsu ◽  
Yoshiharu Itoh ◽  
Masayuki Yoshida

Sign in / Sign up

Export Citation Format

Share Document