scholarly journals Assessment of natural variation in the first pore domain of the tomato HKT1;2 transporter and characterization of mutated versions of SlHKT1;2 expressed in Xenopus laevis oocytes and via complementation of the salt sensitive athkt1;1 mutant

2014 ◽  
Vol 5 ◽  
Author(s):  
Pedro M. F. Almeida ◽  
Gert-Jan de Boer ◽  
Albertus H. de Boer
2021 ◽  
Vol 14 (7) ◽  
pp. 698
Author(s):  
Tina V. A. Hansen ◽  
Richard K. Grencis ◽  
Mohamed Issouf ◽  
Cédric Neveu ◽  
Claude L. Charvet

The human whipworm, Trichuris trichiura, is estimated to infect 289.6 million people globally. Control of human trichuriasis is a particular challenge, as most anthelmintics have a limited single-dose efficacy, with the striking exception of the narrow-spectrum anthelmintic, oxantel. We recently identified a novel ACR-16-like subunit from the pig whipworm, T. suis which gave rise to a functional acetylcholine receptor (nAChR) preferentially activated by oxantel. However, there is no ion channel described in the mouse model parasite T. muris so far. Here, we have identified the ACR-16-like and ACR-19 subunits from T. muris, and performed the functional characterization of the receptors in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. We found that the ACR-16-like subunit from T. muris formed a homomeric receptor gated by acetylcholine whereas the ACR-19 failed to create a functional channel. The subsequent pharmacological analysis of the Tmu-ACR-16-like receptor revealed that acetylcholine and oxantel were equally potent. The Tmu-ACR-16-like was more responsive to the toxic agonist epibatidine, but insensitive to pyrantel, in contrast to the Tsu-ACR-16-like receptor. These findings confirm that the ACR-16-like nAChR from Trichuris spp. is a preferential drug target for oxantel, and highlights the pharmacological difference between Trichuris species.


1995 ◽  
Vol 198 (4) ◽  
pp. 961-966
Author(s):  
V F Sacchi ◽  
C Perego ◽  
S Magagnin

The injection of poly(A)+ mRNA prepared from Philosamia cynthia midgut caused time- and dose-dependent increases of leucine transport in Xenopus laevis oocytes, with an increase in leucine uptake 1.5-3 times that of oocytes injected with water. When the NaCl concentration was reduced from 100 to 5 mmol l-1, the difference between mRNA- and water-injected oocytes was greater and a fourfold increase of L-leucine uptake was measured. D-Leucine (10 mmol l-1) completely inhibited the induced uptake of 0.1 mmol l-1 L-leucine. The newly expressed component of L-leucine uptake increased at alkaline pH and was abolished by incubation for 15 min with 15 mmol l-1 phenylglyoxal. The mean Km values, calculated using Na+ activation curves of leucine uptake, were 23.3 +/- 6.1 mmol l-1 in water-injected oocytes and 0.4 +/- 0.2 mmol l-1 for the newly expressed component of leucine uptake in mRNA-injected oocytes. On the basis of these results, we conclude that the increase of L-leucine uptake in mRNA-injected oocytes was due to the expression of a new transport system, which differs from the endogenous ones and shares many features with that found previously in Philosamia cynthia midgut.


1998 ◽  
Vol 333 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Stefan BRÖER ◽  
Hans-Peter SCHNEIDER ◽  
Angelika BRÖER ◽  
Basim RAHMAN ◽  
Bernd HAMPRECHT ◽  
...  

Several laboratories have investigated monocarboxylate transport in a variety of cell types. The characterization of the cloned transporter isoforms in a suitable expression system is nevertheless still lacking. H+/monocarboxylate co-transport was therefore investigated in monocarboxylate transporter 1 (MCT1)-expressing Xenopus laevis oocytes by using pH-sensitive microelectrodes and [14C]lactate. Superfusion with lactate resulted in intracellular acidification of MCT1-expressing oocytes, but not in non-injected control oocytes. The basic kinetic properties of lactate transport in MCT1-expressing oocytes were determined by analysing the rates of intracellular pH changes under different conditions. The results were in agreement with the known properties of the transporter, with respect to both the dependence on the lactate concentration and the external pH value. Besides lactate, MCT1 mediated the reversible transport of a wide variety of monocarboxylic acids including pyruvate, d,l-3-hydroxybutyrate, acetoacetate, α-oxoisohexanoate and α-oxoisovalerate, but not of dicarboxylic and tricarboxylic acids. The inhibitor α-cyano-4-hydroxycinnamate bound strongly to the transporter without being translocated, but could be displaced by the addition of lactate. In addition to changes in the intracellular pH, lactate transport also induced deviations from the resting membrane potential.


2003 ◽  
Vol 95 (5) ◽  
pp. 311-320 ◽  
Author(s):  
Franck Chesnel ◽  
Christophe Heligon ◽  
Laurent Richard-Parpaillon ◽  
Daniel Boujard

2000 ◽  
Vol 10 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
Carsten A. Wagner ◽  
Björn Friedrich ◽  
Iwan Setiawan ◽  
Florian Lang ◽  
Stefan Bröer

1988 ◽  
Vol 8 (10) ◽  
pp. 4257-4269
Author(s):  
A Shimamura ◽  
D Tremethick ◽  
A Worcel

We describe an in vitro system, based on the Xenopus laevis oocyte supernatant of Glikin et al. (G. Glikin, I. Ruberti, and A. Worcel, Cell 37:33-41, 1984), that packages DNA into minichromosomes with regularly spaced nucleosomes containing histones H3, H4, H2A, and H2B but no histone H1. The same supernatant also assembles the 5S RNA transcription complex; however, under the conditions that favor chromatin assembly, transcription is inhibited and a phased nucleosome forms over the 5S RNA gene. The minichromosomes that are fully loaded with nucleosomes remain refractory to transcriptional activation by 5S RNA transcription factors. Our data suggest that this repression is caused by a nucleosome covering the 5S RNA gene and that histone H1 is not required for regular nucleosome spacing or for gene repression in this system.


Biochemistry ◽  
1990 ◽  
Vol 29 (3) ◽  
pp. 658-667 ◽  
Author(s):  
Xavier Cayla ◽  
Jozef Goris ◽  
Jacques Hermann ◽  
Peter Hendrix ◽  
Rene Ozon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document