scholarly journals Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change

2018 ◽  
Vol 9 ◽  
Author(s):  
Jonathan J. Henn ◽  
Vanessa Buzzard ◽  
Brian J. Enquist ◽  
Aud H. Halbritter ◽  
Kari Klanderud ◽  
...  
Diversity ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 62 ◽  
Author(s):  
Yuriy Kobiv

Population trends in rare alpine plant species in the high-mountain zone of the Ukrainian Carpathians are described with regard to the types of habitats where they occur. Populations of cold-adapted species confined to snowbeds, alpine screes, poorly vegetated rocks, and the highest ridges, as well as mires and springs, are very vulnerable to climate change, while their habitats tend to shrink. The direct impact of warming affects mainly the most cryophilic species. Another driver of changes is climate-induced succession that results in denser vegetation cover and encroachment of more thermophilic plants, which replace low-competitive rare alpine species. Their replacement is largely caused by the loss of open microsites suitable for seed recruitment. However, the climate-driven decrease of snow cover often leads to frost damage to vegetation that provides gaps appropriate for the establishment of many rare species. One of the groups of species that benefit from warming includes rather thermophilic tall herbs that are more common in the subalpine zone but have been actively spreading at higher altitudes lately.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Nancai Pei ◽  
W. John Kress

Green plants provide the foundation for the structure, function, and interactions among organisms in both tropical and temperate zones. To date, many investigations have revealed patterns and mechanisms that generate plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Here, we recognize four themes that link studies from Asia and Europe presented in this Special Issue: (1) genetic analyses of diverse plant species; (2) above- and below-ground forest biodiversity; (3) trait expression and biological mechanisms; and (4) interactions of woody plants within a changing environment. These investigations enlarge our understanding of the origins of diversity, trait variation and heritability, and plant–environment interactions from diverse perspectives.


Science ◽  
2020 ◽  
Vol 370 (6523) ◽  
pp. 1469-1473
Author(s):  
Patrice Descombes ◽  
Camille Pitteloud ◽  
Gaëtan Glauser ◽  
Emmanuel Defossez ◽  
Alan Kergunteuil ◽  
...  

Herbivory and plant defenses exhibit a coupled decline along elevation gradients. However, the current ecological equilibrium could be disrupted under climate change, with a faster upward range shift of animals than plants. Here, we experimentally simulated this upward herbivore range shift by translocating low-elevation herbivore insects to alpine grasslands. We report that the introduction of novel herbivores and increased herbivory disrupted the vertical functional organization of the plant canopy. By feeding preferentially on alpine plants with functional traits matching their low-elevation host plants, herbivores reduced the biomass of dominant alpine plant species and favored encroachment of herbivore-resistant small-stature plant species, inflating species richness. Supplementing a direct effect of temperature, novel biotic interactions represent a neglected but major driver of ecosystem modifications under climate change.


Sign in / Sign up

Export Citation Format

Share Document