scholarly journals Research in Forest Biology in the Era of Climate Change and Rapid Urbanization

Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Nancai Pei ◽  
W. John Kress

Green plants provide the foundation for the structure, function, and interactions among organisms in both tropical and temperate zones. To date, many investigations have revealed patterns and mechanisms that generate plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Here, we recognize four themes that link studies from Asia and Europe presented in this Special Issue: (1) genetic analyses of diverse plant species; (2) above- and below-ground forest biodiversity; (3) trait expression and biological mechanisms; and (4) interactions of woody plants within a changing environment. These investigations enlarge our understanding of the origins of diversity, trait variation and heritability, and plant–environment interactions from diverse perspectives.

2018 ◽  
Vol 9 ◽  
Author(s):  
Jonathan J. Henn ◽  
Vanessa Buzzard ◽  
Brian J. Enquist ◽  
Aud H. Halbritter ◽  
Kari Klanderud ◽  
...  

Ecology ◽  
2010 ◽  
Vol 91 (3) ◽  
pp. 767-781 ◽  
Author(s):  
Paul Kardol ◽  
Melissa A. Cregger ◽  
Courtney E. Campany ◽  
Aimee T. Classen

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1047
Author(s):  
Gianni Bellocchi ◽  
Catherine Picon-Cochard

Associated with livestock farming, grasslands with a high diversity of plant species are at the core of low-input fodder production worldwide [...]


2021 ◽  
Author(s):  
Birgit Nordt ◽  
Isabell Hensen ◽  
Solveig Franziska Bucher ◽  
Martin Freiberg ◽  
Richard B. Primack ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Sookyung Shin ◽  
Jung-Hyun Kim ◽  
Ji-Hee Dang ◽  
In-Soon Seo ◽  
Byoung Yoon Lee

AbstractThe climate is changing rapidly, and this may pose a major threat to global biodiversity. One of the most distinctive consequences of climate change is the poleward and/or upward shift of species distribution ranges associated with increasing temperatures, resulting in a change of species composition and community structure in the forest ecosystems. The Baekdudaegan mountain range connects most forests from the lowland to the subalpine zone in South Korea and is therefore recognized as one of the most important biodiversity hotspots. This study was conducted to understand the distribution range of vascular plants along elevational gradients through field surveys in the six national parks of the Baekdudaegan mountain range. We identified the upper and lower distribution limits of a total of 873 taxa of vascular plants with 117 families, 418 genera, 793 species, 14 subspecies, 62 varieties, two forms, and two hybrids. A total of 12 conifers were recorded along the elevational gradient. The distribution ranges of Abies koreana, Picea jezoensis, Pinus pumila, and Thuja koraiensis were limited to over 1000 m above sea level. We also identified 21 broad-leaved trees in the subalpine zone. A total of 45 Korean endemic plant species were observed, and of these, 15 taxa (including Aconitum chiisanense and Hanabusaya asiatica) showed a narrow distribution range in the subalpine zone. Our study provides valuable information on the current elevational distribution ranges of vascular plants in the six national parks of South Korea, which could serve as a baseline for vertical shifts under future climate change.


2020 ◽  
Vol 8 (7) ◽  
pp. 1056
Author(s):  
Cody Molnar ◽  
Ekaterina Nikolaeva ◽  
Seonghwan Kim ◽  
Tracey Olson ◽  
Devin Bily ◽  
...  

The increasing movement of exotic pathogens calls for systematic surveillance so that newly introduced pathogens can be recognized and dealt with early. A resource crucial for recognizing such pathogens is knowledge about the spatial and temporal diversity of endemic pathogens. Here, we report an effort to build this resource for Pennsylvania (PA) by characterizing the identity and distribution of Phytophthora species isolated from diverse plant species in PA nurseries and greenhouses. We identified 1137 Phytophthora isolates cultured from clinical samples of >150 plant species submitted to the PA Department of Agriculture for diagnosis from 1975 to 2019 using sequences of one or more loci and morphological characteristics. The three most commonly received plants were Abies, Rhododendron, and Pseudotsuga. Thirty-six Phytophthora species identified represent all clades, except 3 and 10, and included a distinct subgroup of a known species and a prospective new species. Prominent pathogenic species such as P. cactorum, P. cinnamomi, P. nicotianae, P. drechsleri, P. pini, P. plurivora, and P. sp. kelmania have been found consistently since 1975. One isolate cultured from Juniperus horizontalis roots did not correspond to any known species, and several other isolates also show considerable genetic variation from any authentic species or isolate. Some species were isolated from never-before-documented plants, suggesting that their host range is larger than previously thought. This survey only provides a coarse picture of historical patterns of Phytophthora encounters in PA nurseries and greenhouses because the isolation of Phytophthora was not designed for a systematic survey. However, its extensive temporal and plant coverage offers a unique insight into the association of Phytophthora with diverse plants in nurseries and greenhouses.


2021 ◽  
Vol 129 ◽  
pp. 107919
Author(s):  
Wenqin Tu ◽  
Qinli Xiong ◽  
Xiaoping Qiu ◽  
Yongmei Zhang

2009 ◽  
Vol 39 (2) ◽  
pp. 231-248 ◽  
Author(s):  
Jeffrey S. Dukes ◽  
Jennifer Pontius ◽  
David Orwig ◽  
Jeffrey R. Garnas ◽  
Vikki L. Rodgers ◽  
...  

Climate models project that by 2100, the northeastern US and eastern Canada will warm by approximately 3–5 °C, with increased winter precipitation. These changes will affect trees directly and also indirectly through effects on “nuisance” species, such as insect pests, pathogens, and invasive plants. We review how basic ecological principles can be used to predict nuisance species’ responses to climate change and how this is likely to impact northeastern forests. We then examine in detail the potential responses of two pest species (hemlock woolly adelgid ( Adelges tsugae Annand) and forest tent caterpillar ( Malacosoma disstria Hubner)), two pathogens (armillaria root rot ( Armillaria spp.) and beech bark disease ( Cryptococcus fagisuga Lind. + Neonectria spp.)), and two invasive plant species (glossy buckthorn ( Frangula alnus Mill.) and oriental bittersweet ( Celastrus orbiculatus Thunb.)). Several of these species are likely to have stronger or more widespread effects on forest composition and structure under the projected climate. However, uncertainty pervades our predictions because we lack adequate data on the species and because some species depend on complex, incompletely understood, unstable relationships. While targeted research will increase our confidence in making predictions, some uncertainty will always persist. Therefore, we encourage policies that allow for this uncertainty by considering a wide range of possible scenarios.


2017 ◽  
Vol 34 (2) ◽  
pp. 229-248 ◽  
Author(s):  
Matthew E. Kahn

Climate change could significantly reduce the quality of life for poor people in Asia. Extreme heat and drought, and the increased incidence of natural disasters will pose new challenges for the urban poor and rural farmers. If farming profits decline, urbanization rates will accelerate and the social costs of rapid urbanization could increase due to rising infectious disease rates, pollution, and congestion. This paper studies strategies for reducing the increased social costs imposed on cities by climate change.


Sign in / Sign up

Export Citation Format

Share Document