scholarly journals Why Did the Earwitnesses to the John F. Kennedy Assassination Not Agree About the Location of the Gunman?

2021 ◽  
Vol 12 ◽  
Author(s):  
Dennis McFadden

Earwitnesses to the 1963 assassination of President John F. Kennedy (JFK) did not agree about the location of the gunman even though their judgments about the number and timing of the gunshots were reasonably consistent. Even earwitnesses at the same general location disagreed. An examination of the acoustics of supersonic bullets and the characteristics of human sound localization help explain the general disagreement about the origin of the gunshots. The key fact is that a shock wave produced by the supersonic bullet arrived prior to the muzzle blast for many earwitnesses, and the shock wave provides erroneous information about the origin of the gunshot. During the government's official re-enactment of the JFK assassination in 1978, expert observers were highly accurate in localizing the origin of gunshots taken from either of two locations, but their supplementary observations help explain the absence of a consensus among the earwitnesses to the assassination itself.

Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


2007 ◽  
Vol 177 (4S) ◽  
pp. 417-417
Author(s):  
Eric A. Singer ◽  
Jared D. Christensen ◽  
Susan Messing ◽  
Erdal Erturk

Sign in / Sign up

Export Citation Format

Share Document