scholarly journals An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia

2021 ◽  
Vol 12 ◽  
Author(s):  
Magdalena Orzylowski ◽  
Esther Fujiwara ◽  
Darrell D. Mousseau ◽  
Glen B. Baker

Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.

2016 ◽  
Vol 23 (3) ◽  
pp. 221-231 ◽  
Author(s):  
Victor Briz ◽  
Michel Baudry

Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yihui Cui ◽  
Ilya Prokin ◽  
Hao Xu ◽  
Bruno Delord ◽  
Stephane Genet ◽  
...  

Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However, it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Samaneh Safari ◽  
Nesa Ahmadi ◽  
Reihaneh Mohammadkhani ◽  
Reza Ghahremani ◽  
Maryam Khajvand-Abedeni ◽  
...  

Abstract Background Recent studies show that gender may have a significant impact on brain functions. However, the reports of sex effects on spatial ability and synaptic plasticity in rodents are divergent and controversial. Here spatial learning and memory was measured in male and female rats by using Morris water maze (MWM) task. Moreover, to assess sex difference in hippocampal synaptic plasticity we examined hippocampal long-term potentiation (LTP) at perforant pathway-dentate gyrus (PP-DG) synapses. Results In MWM task, male rats outperformed female rats, as they had significantly shorter swim distance and escape latency to find the hidden platform during training days. During spatial reference memory test, female rats spent less time and traveled less distance in the target zone. Male rats also had larger LTP at PP-DG synapses, which was evident in the high magnitude of population spike (PS) potentiation and the field excitatory post synaptic potentials (fEPSP) slope. Conclusions Taken together, our results suggest that sex differences in the LTP at PP-DG synapses, possibly contribute to the observed sex difference in spatial learning and memory.


2019 ◽  
Author(s):  
Olga I. Ostrovskaya ◽  
Guan Cao ◽  
Cagla Eroglu ◽  
Kristen M. Harris

ABSTRACTAnalysis of long-term potentiation (LTP) provides a powerful window into cellular mechanisms of learning and memory. Prior work shows late LTP (L-LTP), lasting >3 hours, occurs abruptly at postnatal day 12 (P12) in rat hippocampus. The goal here was to determine the developmental profile of synaptic plasticity leading to L-LTP in the mouse hippocampus. Two mouse strains and two mutations known to affect synaptic plasticity were chosen: C57BL/6 and Fmr1−/y on the C57BL/6 background, and 129SVE and Hevin−/− (Sparcl1−/−) on the 129SVE background. Like rats, hippocampal slices from all of the mice showed test pulse-induced depression early during development that was gradually resolved with maturation by 5 weeks. All the mouse strains showed a gradual progression between P10-P35 in the expression of short-term potentiation (STP), lasting ≤ one hour. In the 129SVE mice, L-LTP onset (>25% of slices) occurred by 3 weeks, reliable L-LTP (>50% slices) was achieved by 4 weeks, and Hevin−/− advanced this profile by one week. In the C57BL/6 mice, L-LTP onset occurred significantly later, over 3-4 weeks, and reliability was not achieved until 5 weeks. Although some of the Fmr1−/y mice showed L-LTP before 3 weeks, reliable L-LTP also was not achieved until 5 weeks. Two bouts of TBS separated by ≥90 minutes advanced the onset age of L-LTP in rats from P12 to P10. In contrast, L-LTP onset was not advanced in any of the mouse genotypes by multiple bouts of TBS at 90 or 180 minute intervals. These findings show important species differences in the onset of STP and L-LTP, which occur at the same age in rats but are sequentially acquired in mice.SIGNIFICANCE STATEMENTLong-term potentiation (LTP) is a cellular mechanism of learning and memory. Knowing the developmental profile for LTP provides a basis for investigating developmental abnormalities leading to intellectual disabilities and other neurodevelopmental disorders. Here we explore the developmental profile of LTP onset in two wild type mouse strains, C57BL/6 and 129SVE, together with Fmr1−/y and Hevin−/− (Sparcl1−/−) mutations that produce abnormalities in synaptic structure, plasticity, and development. Our data provide a foundation for future investigations into connections between structural and functional plasticity leading to developmental anomalies in the brain.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Zahra Salimi ◽  
Farshad Moradpour ◽  
Zahra Rashidi ◽  
Fatemeh Zarei ◽  
Mohammad Rasool Khazaei ◽  
...  

: Long-term potentiation (LTP) is one of the most important topics in neuroscience. It refers to a long-lasting increase in synaptic efficacy and is considered as a molecular and cellular mechanism of learning and memory. Neurotrophins play essential roles in different processes in the central nervous system (CNS), such as synaptogenesis, survival of specific populations of neurons, and neuroplasticity. Some evidence suggests that neurotrophins also participate in the synaptic plasticity related to learning and memory formation. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor that is extensively expressed in the hippocampus and cerebral cortex, where it promotes neuroprotection, increases synaptogenesis and neurotransmission, and mediates synapse formation and synaptic plasticity. In this review, we first focused on the research investigating the effects of BDNF on synaptic plasticity and LTP induction and then reviewed the neuronal signaling molecules employed by BDNF to promote its effects on these processes.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


1997 ◽  
Vol 20 (4) ◽  
pp. 622-623 ◽  
Author(s):  
Stephen Maren

Shors & Matzel provide compelling arguments against a role for hippocampal long-term potentiation (LTP) in mammalian learning and memory. As an alternative, they suggest that LTP is an arousal mechanism. I will argue that this view is not a satisfactory alternative to current conceptions of LTP function.


Sign in / Sign up

Export Citation Format

Share Document