scholarly journals Endocannabinoid dynamics gate spike-timing dependent depression and potentiation

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yihui Cui ◽  
Ilya Prokin ◽  
Hao Xu ◽  
Bruno Delord ◽  
Stephane Genet ◽  
...  

Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However, it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory.

The Neuron ◽  
2015 ◽  
pp. 489-528
Author(s):  
Irwin B. Levitan ◽  
Leonard K. Kaczmarek

Psychologists have described different kinds of learning and memory, and there is an ongoing search for the physical basis of these distinctions and for the cellular and molecular mechanisms responsible. Because of the complexity of most nervous systems, the search has focused to a large extent on animals with relatively simple nervous systems and on reduced preparations. Common themes have emerged, such as the requirement for signaling pathways linked to calcium and cyclic AMP, and the fact that pathways used in normal development continue to be used for plasticity in adults. At the same time, it is clear that there is an enormous diversity of cellular mechanisms that contribute to short-term and long-term phases of memory formation. These include long-term potentiation (LTP), long-term depression (LTD), spike-timing dependent plasticity, synaptic tagging, and synaptic scaling. Each type of synaptic connection has its own personality such that, in response to a particular pattern of stimulation, one synapse may increase its postsynaptic receptors while another may expand its presynaptic terminals.


2016 ◽  
Vol 23 (3) ◽  
pp. 221-231 ◽  
Author(s):  
Victor Briz ◽  
Michel Baudry

Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.


2020 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard Mains

Abstract Background: Kalirin-7 (Kal7) is a multidomain scaffold and guanine nucleotide exchange factor localized to the postsynaptic density, where Kal7 is crucial for synaptic plasticity. Kal7 knockout mice exhibit marked suppression of long-term potentiation and long-term depression in hippocampus, cerebral cortex and spinal cord, with depressed surface expression of GluN2B receptor subunits and dramatically blunted perception of pain. Kal7 knockout animals show exaggerated locomotor responses to psychostimulants and self-administer cocaine more enthusiastically than wildtype mice. Results: To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we infused candidate intracellular interfering peptides to acutely challenge the synaptic function(s) of Kal7 with potential protein binding partners, to determine if plasticity deficits in Kal7-/- mice are the product of developmental processes since conception, or could be produced on a much shorter time scale. We demonstrated that these small intracellular peptides disrupted normal long-term potentiation and long-term depression, strongly suggesting that maintenance of established interactions of Kal7 with PSD-95 and/or GluN2B is crucial to synaptic plasticity. Conclusions: Blockade of the Kal7-GluN2B interaction was most effective at blocking long-term potentiation, but had no effect on long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.


Author(s):  
Arianna Maffei

Synaptic connections in the brain can change their strength in response to patterned activity. This ability of synapses is defined as synaptic plasticity. Long lasting forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), are thought to mediate the storage of information about stimuli or features of stimuli in a neural circuit. Since its discovery in the early 1970s, synaptic plasticity became a central subject of neuroscience, and many studies centered on understanding its mechanisms, as well as its functional implications.


2019 ◽  
Vol 3 ◽  
pp. 239821281984821 ◽  
Author(s):  
TVP Bliss ◽  
GL Collingridge

In this article, we describe our involvement in the early days of research into long-term potentiation. We start with a description of the early experiments conducted in Oslo and London where long-term potentiation was first characterised. We discuss the ways in which the molecular pharmacology of glutamate receptors control the induction and expression of long-term potentiation and its counterpart, long-term depression. We then go on to summarise the extraordinary advances in understanding the cellular mechanisms of synaptic plasticity that have taken place in the subsequent half century. Finally, the increasing evidence that impaired long-term potentiation is a core feature of many brain disorders (LToPathies) is addressed by way of a few selected examples.


2019 ◽  
Vol 116 (12) ◽  
pp. 5737-5746 ◽  
Author(s):  
Karen Ka Lam Pang ◽  
Mahima Sharma ◽  
Kumar Krishna-K. ◽  
Thomas Behnisch ◽  
Sreedharan Sajikumar

In spike-timing-dependent plasticity (STDP), the direction and degree of synaptic modification are determined by the coherence of pre- and postsynaptic activities within a neuron. However, in the adult rat hippocampus, it remains unclear whether STDP-like mechanisms in a neuronal population induce synaptic potentiation of a long duration. Thus, we asked whether the magnitude and maintenance of synaptic plasticity in a population of CA1 neurons differ as a function of the temporal order and interval between pre- and postsynaptic activities. Modulation of the relative timing of Schaffer collateral fibers (presynaptic component) and CA1 axons (postsynaptic component) stimulations resulted in an asymmetric population STDP (pSTDP). The resulting potentiation in response to 20 pairings at 1 Hz was largest in magnitude and most persistent (4 h) when presynaptic activity coincided with or preceded postsynaptic activity. Interestingly, when postsynaptic activation preceded presynaptic stimulation by 20 ms, an immediate increase in field excitatory postsynaptic potentials was observed, but it eventually transformed into a synaptic depression. Furthermore, pSTDP engaged in selective forms of late-associative activity: It facilitated the maintenance of tetanization-induced early long-term potentiation (LTP) in neighboring synapses but not early long-term depression, reflecting possible mechanistic differences with classical tetanization-induced LTP. The data demonstrate that a pairing of pre- and postsynaptic activities in a neuronal population can greatly reduce the required number of synaptic plasticity-evoking events and induce a potentiation of a degree and duration similar to that with repeated tetanization. Thus, pSTDP determines synaptic efficacy in the hippocampal CA3–CA1 circuit and could bias the CA1 neuronal population toward potentiation in future events.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Yongbeom Cho ◽  
Jae Yoon Lee ◽  
Eunseon Yu ◽  
Jae-Hee Han ◽  
Myung-Hyun Baek ◽  
...  

In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler–Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.


1995 ◽  
Vol 73 (9) ◽  
pp. 1312-1322 ◽  
Author(s):  
T. Kamishita ◽  
H. Haruta ◽  
N. Torii ◽  
T. Tsumoto ◽  
T. P. Hicks

Two forms of use-dependent synaptic plasticity, called long-term potentiation (LTP) and long-term depression (LTD), can be elicited in the visual cortex following different paradigms of electrophysiological stimulation. These neurobiological phenomena often are considered as necessary components of models for the alteration in function of the nervous system that must occur at some level for the establishment and (or) maintenance of memory engrams, for learning processes, or for the consolidation of active neural connections and regression of inactive contacts in the developing brain. It has been postulated that for LTP and LTD to be produced in the hippocampus, activation of a particular subtype of excitatory amino acid receptor, the metabotropic receptor, is a critical requirement. Only recently has it become possible to test this hypothesis directly, as a new compound, (±)-α-methyl-4-carboxyphenylglycine (MCPG), has been introduced and the suggestion made that it selectively antagonizes the metabotropic receptor. This substance has been tested in the present study on responses recorded from slices of rat visual cortex and has been found both to block the activation of the metabotropic receptor and to interfere selectively with the form of synaptic plasticity called LTD. It thus appears from the experiments reported in this paper as though the metabotropic receptor subtype that is blocked by MCPG is required for the expression of LTD but not for the expression of LTP, in the visual cortex of adult rats.Key words: excitatory amino acids, long-term potentiation, long-term depression, visual cortex, (±)-α-methyl-4-carboxyphenylglycine (MCPG).


2019 ◽  
Author(s):  
Yulia Dembitskaya ◽  
Yu-Wei Wu ◽  
Alexey Semyanov

AbstractSynaptic plasticity is triggered by different patterns of neuronal network activity. Network activity leads to an increase in ambient GABA concentration and tonic activation of GABAA receptors. How tonic GABAA conductance affects synaptic plasticity during temporal and rate-based coding is poorly understood. Here, we show that tonic GABAA conductance differently affects long-term potentiation (LTP) induced by different stimulation patterns. The LTP based on a temporal spike - EPSP order (spike-timing-dependent [st] LTP) was not affected by exogenous GABA application. Backpropagating action potential, which enables Ca2+ entry through N-methyl-D-aspartate receptors (NMDARs) during stLTP induction, was only slightly reduced by the tonic conductance. In contrast, GABA application impeded LTP dependent on spiking rate (theta-burst-induced [tb] LTP) by reducing the EPSP bust response and, hence, NMDAR-mediated Ca2+ entry during tbLTP induction. Our results may explain the changes in different forms of memory under physiological and pathological conditions that affect tonic GABAA conductance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Magdalena Orzylowski ◽  
Esther Fujiwara ◽  
Darrell D. Mousseau ◽  
Glen B. Baker

Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.


Sign in / Sign up

Export Citation Format

Share Document