scholarly journals Abnormal Cortical Activation Patterns Among Chinese-Speaking Schizophrenia Patients During Category and Letter Verbal Fluency Tasks Revealed by Multi-Channel Functional Near-Infrared Spectroscopy

2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Li ◽  
Junlin Mu ◽  
Chenyu Shen ◽  
Guanqun Yao ◽  
Kun Feng ◽  
...  

Background: Functional near-infrared spectroscopy (fNIRS) has many advantages over other neuroimaging modalities for routine measurement of task-dependent cortical activation, but most fNIRS studies of schizophrenia have used letter fluency tasks (LFTs). Further, performances on category fluency tasks (CFTs) and LFTs may be distinct in Chinese patients due to the unique semantic features of Chinese written characters. To identify unique disease biomarkers measurable by fNIRS in Chinese schizophrenia patients, this study compared cortical oxygenated hemoglobin changes ([oxy-Hb]) during a Chinese LFT and CFT between patients and healthy controls.Methods: Inpatients of the Second Affiliated Hospital of Xinxiang Medical University were recruited from Match 2020 to July 2021. The Positive and Negative Symptom Scale (PANSS) was used to evaluate psychiatric symptoms. Dynamic changes in [oxy-Hb], an indicator of neural activity, were measured during CFT and LFT performance by 52-channel fNIRS.Results: Forty-seven schizophrenia inpatients and 29 healthy controls completed all tests. Schizophrenia patients showed significant cortical activation at 15 channels covering the left hemisphere and 17 channels over the right hemisphere during the CFT. During the LFT, activity was significantly increased at only six channels, all over the left hemisphere (FDR P < 0.05). In healthy controls, significant [oxy-Hb] increases were found at 24 channels over the left hemisphere and 19 channels over the right hemisphere during CFT. While during the LFT, the significant increases were found at 7 channels all over the left hemisphere (FDR P < 0.05). When years of education was included as a covariate, the schizophrenia group demonstrated no significant hypoactivation relative to healthy controls at any channel after FDR correction (FDR P < 0.05) during CFT while demonstrated significant hypoactivation at channel 11 during LFT (FDR P < 0.05). There were no significant associations between PANSS scores and [oxy-Hb] changes after FDR correction (FDR P < 0.05).Conclusions: Left lateralization during CFT was reduced among schizophrenia patients and may be related to the semantic deficit. The Chinese-CFT could be a more sensitive indicator of frontal-temporal dysfunction in schizophrenia.

2019 ◽  
Author(s):  
T. Gruber ◽  
C. Debracque ◽  
L. Ceravolo ◽  
K. Igloi ◽  
B. Marin Bosch ◽  
...  

AbstractVariations of the vocal tone of the voice during speech production, known as prosody, provide information about the emotional state of the speaker. In recent years, functional imaging has suggested a role of both right and left inferior frontal cortices in attentive decoding and cognitive evaluation of emotional cues in human vocalizations. Here, we investigated the suitability of functional Near-Infrared Spectroscopy (fNIRS) to study frontal lateralization of human emotion vocalization processing during explicit and implicit categorization and discrimination. Participants listened to speech-like but semantically meaningless words spoken in a neutral, angry or fearful tone and had to categorize or discriminate them based on their emotional or linguistic content. Behaviorally, participants were faster to discriminate than to categorize and they processed the linguistic content of stimuli faster than their emotional content, while an interaction between condition (emotion/word) and task (discrimination/categorization) influenced accuracy. At the brain level, we found a four-way interaction in the fNIRS signal between condition, task, emotion and channel, highlighting the involvement of the right hemisphere to process fear stimuli, and of both hemispheres to treat anger stimuli. Our results show that fNIRS is suitable to study vocal emotion evaluation in humans, fostering its application to study emotional appraisal.


2021 ◽  
Author(s):  
Sungmin Cho ◽  
Won-Seok Kim ◽  
Jihong Park ◽  
Seung Hyun Lee ◽  
Jongseung Lee ◽  
...  

Unilateral spatial neglect (USN) is common after stroke and associated with poor functional recovery. Prism adaptation (PA) is one of the most supported modality able to ameliorate USN but underapplied due to several issues. Using immersive virtual reality and depth-sensing camera, we developed the virtual prism adaptation therapy (VPAT) to overcome the limitations in conventional PA. In this study, we investigated whether VPAT can induce behavioral adaptations and which cortical area is most significantly activated. Fourteen healthy subjects participated in this study. The experiment consisted of four sequential phases (pre-VAPT, VPAT-10°, VPAT-20°, and post-VPAT) with functional near-infrared spectroscopy recordings. Each phase consisted of alternating target pointing and resting (or clicking) blocks. To find out the most significantly activated area during pointing in different phases (VPAT-10°, VPAT-20°, and Post-VPAT) in contrast to pointing during the pre-VPAT phase, we analyzed changes in oxyhemoglobin concentration during pointing. The pointing errors of the virtual hand deviated to the right-side during early pointing blocks in the VPAT-10°and VPAT-20°phases. There was a left-side deviation of the real hand to the target in the post-VPAT phase. The most significantly activated channels were all located in the right hemisphere, and possible corresponding cortical areas included the dorsolateral prefrontal cortex and frontal eye field. In conclusion, VPAT may induce behavioral adaptation with modulation of the dorsal attentional network. Future clinical trials using multiple sessions of a high degree of rightward deviation VPAT over a more extended period are required in stroke patients with unilateral spatial neglect.


2021 ◽  
Author(s):  
Daniela Gabiatti Donadel ◽  
Maxciel Zortea ◽  
Iraci Lucena da Silva Torres ◽  
Felipe Fregni ◽  
Wolnei Caumo

Abstract We compared the activation pattern at the motor cortex (MC and prefrontal cortex (PFC) based on the delta value (Δ) of oxy-hemoglobin (HbO) by functional near-infrared spectroscopy (fNIRS). We examined the relationship of the ΔHbO based on the peaks at 5°C and 25°C by right-hand immersion in water in 22 fibromyalgia and 19 controls. Fibromyalgia showed a shorter peak latency for HbO at the left MC. In contrast, at the left MC, their HbO increased 117.64% compared to 92.85% in the controls. A receiver operator characteristics (ROC) analysis showed the ΔHbO cutoffs equal to –0.175 at the left and –0.205 at the right PFC offer sensitivity and specificity of at least 80% in screening fibromyalgia compared to controls. In fibromyalgia, a ROC analysis showed that these cutoff points could discriminate those with higher disability due to pain and more severe central sensitization symptoms (CSS). The ROC with the best discriminatory profile was to the CSS score with the ΔHbO at the left PFC (AUC = 0.82, CI 95% = 0.61–100). These results indicate that cortical activation based on the ΔHbO at the PFC might be a sensitive marker to identify those fibromyalgia patients with more severe clinical symptoms.


2019 ◽  
Author(s):  
Takayuki Nakahachi ◽  
Ryouhei Ishii ◽  
Leonides Canuet ◽  
Iori Sato ◽  
Kiyoko Kamibeppu ◽  
...  

Abstract Background: Tetris has recently expanded its place of activity not only to the original entertainment but also to clinical applications such as prevention of trauma flashback. However, to our knowledge, no studies focused on the cortical activation patterns themselves when playing Tetris in a natural form. This study aimed to investigate the activation patterns in the frontal cortex during naturally-performed Tetris for 90 seconds in 24 healthy subjects using functional near-infrared spectroscopy robust to artifacts by motion and electric devices. We also calculated the correlations of behavioral data with cortical activations, and compared the differences in activations between the high and low performers of Tetris. Results: The results demonstrated that significant activations in the frontal cortex during Tetris play had two factors, each showing a similar activation pattern. One of the factors was distributed over the lateral prefrontal cortex bilaterally, and the other was localized to the right prefrontal cortex. Moreover, in the high performers, the activations of the areas centered on the right dorsolateral prefrontal cortex (DLPFC) were estimated to increase and correlations of the activations between those areas and the other areas decrease compared with the low performers. Conclusions: It is suggested that high Tetris performers might reduce functional connectivity between activations of the areas centered on the right DLPFC and the other areas, and increase the local activations compared with low performers. It would be necessary to consider whether its visuospatial cognitive loads stimulate the appropriate areas of the subject’s brain to effectively utilize Tetris play for clinical interventions.


2021 ◽  
Vol 11 (8) ◽  
pp. 968
Author(s):  
Roger C. Ho ◽  
Vijay K. Sharma ◽  
Benjamin Y. Q. Tan ◽  
Alison Y. Y. Ng ◽  
Yit-Shiang Lui ◽  
...  

Impaired sense of smell occurs in a fraction of patients with COVID-19 infection, but its effect on cerebral activity is unknown. Thus, this case report investigated the effect of COVID-19 infection on frontotemporal cortex activity during olfactory stimuli. In this preliminary study, patients who recovered from COVID-19 infection (n = 6) and healthy controls who never contracted COVID-19 (n = 6) were recruited. Relative changes in frontotemporal cortex oxy-hemoglobin during olfactory stimuli was acquired using functional near-infrared spectroscopy (fNIRS). The area under curve (AUC) of oxy-hemoglobin for the time interval 5 s before and 15 s after olfactory stimuli was derived. In addition, olfactory function was assessed using the Sniffin’ Sticks 12-identification test (SIT-12). Patients had lower SIT-12 scores than healthy controls (p = 0.026), but there were no differences in oxy-hemoglobin AUC between healthy controls and patients (p > 0.05). This suggests that past COVID-19 infection may not affect frontotemporal cortex function, and these preliminary results need to be verified in larger samples.


2021 ◽  
Author(s):  
Abigail Fiske ◽  
Carina de Klerk ◽  
Katie Y. K. Lui ◽  
Liam H Collins-Jones ◽  
Alexandra Hendry ◽  
...  

Inhibitory control, a core executive function, emerges in infancy and develops rapidly across childhood. Methodological limitations have meant that studies investigating the neural correlates underlying inhibitory control in infancy are rare. Employing functional near-infrared spectroscopy alongside a novel touchscreen task that measures response inhibition, this study aimed to uncover the neural underpinnings of inhibitory control in 10-month-old infants (N = 135). We found that when inhibition is required, the right prefrontal and parietal cortices were more activated than when there is no inhibitory demand. Further, activation in right prefrontal areas was associated with individual differences in response inhibition performance. This demonstrates that inhibitory control in infants as young as 10 months of age is supported by similar brain areas as in older children and adults. With this study we have lowered the age-boundary for localising the neural substrates of response inhibition to the first year of life.


Photonics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 87 ◽  
Author(s):  
Quaresima ◽  
Ferrari

This mini-review is aimed at briefly summarizing the present status of functional near-infrared spectroscopy (fNIRS) and predicting where the technique should go in the next decade. This mini-review quotes 33 articles on the different fNIRS basics and technical developments and 44 reviews on the fNIRS applications published in the last eight years. The huge number of review articles about a wide spectrum of topics in the field of cognitive and social sciences, functional neuroimaging research, and medicine testifies to the maturity achieved by this non-invasive optical vascular-based functional neuroimaging technique. Today, fNIRS has started to be utilized on healthy subjects while moving freely in different naturalistic settings. Further instrumental developments are expected to be done in the near future to fully satisfy this latter important aspect. In addition, fNIRS procedures, including correction methods for the strong extracranial interferences, need to be standardized before using fNIRS as a clinical tool in individual patients. New research avenues such as interactive neurosciences, cortical activation modulated by different type of sport performance, and cortical activation during neurofeedback training are highlighted.


Sign in / Sign up

Export Citation Format

Share Document