scholarly journals Energy-Efficient Mobility Prediction Routing Protocol for Freely Floating Underwater Acoustic Sensor Networks

Author(s):  
Ghida Jubran Alqahtani ◽  
Fatma Bouabdallah

Recently, there has been an increasing interest in monitoring and exploring underwater environments for scientific applications such as oceanographic data collection, marine surveillance, and pollution detection. Underwater acoustic sensor networks (UASNs) have been proposed as the enabling technology to observe, map, and explore the ocean. The unique characteristics of underwater aquatic environments such as low bandwidth, long propagation delays, and high energy consumption make the data forwarding process very difficult. Moreover, the mobility of the underwater sensors is considered an additional constraint for the success of the data forwarding process. That being said, most of the data forwarding protocols do not realistically consider the dynamic topology of underwater environment as sensor nodes move with the water currents, which is a natural phenomenon. In this research, we propose a mobility prediction optimal data forwarding (MPODF) protocol for UASNs based on mobility prediction. Indeed, by considering a realistic, physically inspired mobility model, our protocol succeeds to forward every generated data packet through one single best path without the need to exchange notification messages, thanks to the mobility prediction module. Simulation results show that our protocol achieves a high packet delivery ratio, high energy efficiency, and reduced end-to-end delay.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guangjie Han ◽  
Na Bao ◽  
Li Liu ◽  
Daqiang Zhang ◽  
Lei Shu

Underwater Acoustic Sensor Networks (UASNs) have drawn great attention for their potential value in ocean monitoring and offshore exploration. In order to make the underwater application possible, the unique characteristics of underwater acoustic channels and continuous node movement inspired the emergence of routing protocols for underwater environment. In this paper, we introduce and compare four prominent routing protocols proposed for UASNs, namely, H2-DAB, GEDAR, E-PULRP, and PER. Performances of the routing protocols are evaluated in terms of the average number of control packets, end-to-end delay, data delivery ratio, and total energy consumption. The impact of water currents on the routing algorithms is also analyzed in our simulation. Experimental results demonstrate that E-PULRP provides high data delivery ratio at the cost of end-to-end delay. H2-DAB has better real-time performance for minimal delay transmission. GEDAR efficiently addresses the problem of void region without introducing extra energy. PER requires the most control packets in the process of routing establishment. Our work aims to provide useful insights to select appropriate routing protocols to fulfil different application requirements in UASNs.


2018 ◽  
Vol 67 (3) ◽  
pp. 2543-2556 ◽  
Author(s):  
Jing Yan ◽  
Xiaoning Zhang ◽  
Xiaoyuan Luo ◽  
Yiyin Wang ◽  
Cailian Chen ◽  
...  

Monitoring and maintaining aquatic environment is the universal need and Underwater Acoustic Sensor Networks (UASN) is an emerging technology plays a major role in acoustic data acquistion. The data acquisition is challenging issue in UASN due to its communication characteristics. Though, there are several geo-opportunistic routing protocols were explored to improve the data acquisition it can be still improved by enhanced routing technique. The existing Geo-graphical depth adjustment routing (GEDAR) uses Global Positioning System(GPS) based notes for improving data acquisition, however it consumes more energy and increases overhead. We make an attempt to study about efficient data acquisition process and its path reliability. The proposed Itinerary aware routing protocol(IARP) acquires neighboring node’s information for constructing efficient and reliable link with minimum information which improves data delivery ratio with minimum energy consumption. The proposed IARP increases 11% packet delivery ratio and reduces delay by 13%, and energy consumption by 9% comparing with existing GEDAR based algorithm. IARP also performs better than Depth based routing (DBR).


Sign in / Sign up

Export Citation Format

Share Document