scholarly journals A Two-Layered Shared Tree Multicast Routing Algorithm for Software Defined Hybrid Satellite-Terrestrial Communication Networks

Author(s):  
Jiayan Xiong ◽  
Zhen Xu ◽  
Zhiqi Dai

Dynamic routing and congestion control are two major problems in software-defined hybrid satellite-terrestrial multicast networks research. Due to terrestrial users being allowed to join or leave the multicast group at any time and the differences between the satellite and the terrestrial networks, many multicast routing algorithms reroute rapidly and thus increase the rerouting overheads. Meanwhile, the congestion ratio is increased by some hot nodes of satellite-terrestrial link transmission paths. This paper focuses on rerouting overheads and congestion problems in satellite-terrestrial multicast networks. We present a satellite-terrestrial network architecture with the Software-Defined Networking (SDN) features to offer dynamic multicast services for terrestrial users. A Two-Layered Shared Tree Multicast (TSTM) routing algorithm is proposed to achieve efficient dynamic multicast group management, address the trade-off between bandwidth consumption and rerouting overheads. The algorithm also implements congestion control by using a load factor to reflect on the global network bandwidth usage in routing calculations. This algorithm balances the rerouting frequencies of satellite and terrestrial networks to decrease the rerouting overheads and also reduces the network congestion ratio. The simulation shows TSTM decreases rerouting cost, user time delay, and node congestion ratio compared with the locality-aware multicast approach (LAMA).

2012 ◽  
Vol 424-425 ◽  
pp. 607-611
Author(s):  
Xue Zhen Shen ◽  
Xin Guo Tang

A HIP multicast mode; based dynamic multicast routing algorithm (HIPDMR) was brought out and network model was established to describe and simplify problem to be researched. HIPDMR used Bellman-Ford as routing search algorithm, which can determine dynamic multicast routing with minimum hop number and overhead while meet constraints of bandwidth, delay, jitter and packet loss rate. Simulation experiments result show that HIPDMR can build dynamic multicast routing under constraints of multiple QoS comparing with algorithms that not considering QoS assuming network node output link capacity be equal


2014 ◽  
Vol 602-605 ◽  
pp. 3169-3172 ◽  
Author(s):  
Yue Li ◽  
Yin Hui Liu ◽  
Zhong Bao Luo

Through the study of MANET's QoS multicast routing problem, we propose a heuristic-demand multicast routing algorithm. Algorithm combines the MANET network bandwidth estimation algorithm, redefined the select function, restrictions request packets of flooding algorithm, to ensure fair treatment delay and bandwidth. Simulation results show that the algorithm has the advantage of fewer routing overhead, high success rate.


2013 ◽  
Vol 397-400 ◽  
pp. 1107-1112
Author(s):  
Yin Fei Dai ◽  
Nian Feng Li

In this paper, dynamic multicast routing and routing optimization criteria have been described.By comparing and analyzing the advantages and disadvantages of several non-rearranged dynamic multicast algorithms, the advantages of the non-rearranged dynamic multicast routing algorithm based on the delay constraint have been further confirmed and a conclusion has been drawn by performance testing.


Sign in / Sign up

Export Citation Format

Share Document