scholarly journals Human Motion Understanding for Selecting Action Timing in Collaborative Human-Robot Interaction

2019 ◽  
Vol 6 ◽  
Author(s):  
Francesco Rea ◽  
Alessia Vignolo ◽  
Alessandra Sciutti ◽  
Nicoletta Noceti
Author(s):  
Michael Boyarsky ◽  
Megan Heenan ◽  
Scott Beardsley ◽  
Philip Voglewede

This paper aims to emulate human motion with a robot for the purpose of improving human-robot interaction (HRI). In order to engineer a robot that demonstrates functionally similar motion to humans, aspects of human motion such as variable stiffness must be captured. This paper successfully determined the variable stiffness humans use in the context of a 1 DOF disturbance rejection task by optimizing a time-varying stiffness parameter to experimental data in the context of a neuro-motor Simulink model. The significant improved agreement between the model and the experimental data in the disturbance rejection task after the addition of variable stiffness demonstrates how important variable stiffness is to creating a model of human motion. To enable a robot to emulate this motion, a predictive stiffness model was developed that attempts to reproduce the stiffness that a human would use in a given situation. The predictive stiffness model successfully decreases the error between the neuro-motor model and the experimental data when compared to the neuro-motor model with a constant stiffness value.


2019 ◽  
Vol 4 (29) ◽  
pp. eaav6079
Author(s):  
Kathleen Fitzsimons ◽  
Ana Maria Acosta ◽  
Julius P. A. Dewald ◽  
Todd D. Murphey

This paper applies information theoretic principles to the investigation of physical human-robot interaction. Drawing from the study of human perception and neural encoding, information theoretic approaches offer a perspective that enables quantitatively interpreting the body as an information channel and bodily motion as an information-carrying signal. We show that ergodicity, which can be interpreted as the degree to which a trajectory encodes information about a task, correctly predicts changes due to reduction of a person’s existing deficit or the addition of algorithmic assistance. The measure also captures changes from training with robotic assistance. Other common measures for assessment failed to capture at least one of these effects. This information-based interpretation of motion can be applied broadly, in the evaluation and design of human-machine interactions, in learning by demonstration paradigms, or in human motion analysis.


Robotica ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 513-526 ◽  
Author(s):  
Sarath Kodagoda ◽  
Stephan Sehestedt ◽  
Gamini Dissanayake

SUMMARYHuman–robot interaction is an emerging area of research where a robot may need to be working in human-populated environments. Human trajectories are generally not random and can belong to gross patterns. Knowledge about these patterns can be learned through observation. In this paper, we address the problem of a robot's social awareness by learning human motion patterns and integrating them in path planning. The gross motion patterns are learned using a novel Sampled Hidden Markov Model, which allows the integration of partial observations in dynamic model building. This model is used in the modified A* path planning algorithm to achieve socially aware trajectories. Novelty of the proposed method is that it can be used on a mobile robot for simultaneous online learning and path planning. The experiments carried out in an office environment show that the paths can be planned seamlessly, avoiding personal spaces of occupants.


Sign in / Sign up

Export Citation Format

Share Document