scholarly journals Navigated, Robot-Driven Laser Craniotomy for SEEG Application Using Optical Coherence Tomography in an Animal Model

2021 ◽  
Vol 8 ◽  
Author(s):  
Fabian Winter ◽  
Tobias Wilken ◽  
Martin Bammerlin ◽  
Julia Shawarba ◽  
Christian Dorfer ◽  
...  

Objectives: We recently introduced a navigated, robot-driven laser beam craniotomy for use with stereoelectroencephalography (SEEG) applications. This method was intended to substitute the hand-held electric power drill in an ex vivo study. The purpose of this in vivo non-recovery pilot study was to acquire data for the depth control unit of this laser device, to test the feasibility of cutting bone channels, and to assess dura perforation and possible cortex damage related to cold ablation.Methods: Multiple holes suitable for SEEG bone channels were planned for the superior portion of two pig craniums using surgical planning software and a frameless, navigated technique. The trajectories were planned to avoid cortical blood vessels using magnetic resonance angiography. Each trajectory was converted into a series of circular paths to cut bone channels. The cutting strategy for each hole involved two modes: a remaining bone thickness mode and a cut through mode (CTR). The remaining bone thickness mode is an automatic coarse approach where the cutting depth is measured in real time using optical coherence tomography (OCT). In this mode, a pre-set measurement, in mm, of the remaining bone is left over by automatically comparing the bone thickness from computed tomography with the OCT depth. In the CTR mode, the cut through at lower cutting energies is managed by observing the cutting site with real-time video.Results: Both anesthesia protocols did not show any irregularities. In total, 19 bone channels were cut in both specimens. All channels were executed according to the planned cutting strategy using the frameless navigation of the robot-driven laser device. The dura showed minor damage after one laser beam and severe damage after two and three laser beams. The cortex was not damaged. As soon as the cut through was obtained, we observed that moderate cerebrospinal fluid leakage impeded the cutting efficiency and interfered with the visualization for depth control. The coaxial camera showed a live video feed in which cut through of the bone could be identified in 84%.Conclusion: Inflowing cerebrospinal fluid disturbed OCT signals, and, therefore, the current CTR method could not be reliably applied. Video imaging is a candidate for observing a successful cut through. OCT and video imaging may be used for depth control to implement an updated SEEG bone channel cutting strategy in the future.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenchen Ren ◽  
Xianxu Zeng ◽  
Zhongna Shi ◽  
Chunyan Wang ◽  
Huifen Wang ◽  
...  

AbstractIn this prospective study of an in-vivo cervical examination using optical coherence tomography (OCT), we evaluated the diagnostic value of non-invasive and real-time OCT in cervical precancerous lesions and cancer diagnosis, and determined the characteristics of OCT images. 733 patients from 5 Chinese hospitals were inspected with OCT and colposcopy-directed biopsy. The OCT images were compared with the histological sections to find out the characteristics of various categories of lesions. The OCT images were also interpreted by 3 investigators to make a 2-class classification, and the results were compared against the pathological results. Various structures of the cervical tissue were clearly observed in OCT images, which matched well with the corresponding histological sections. The OCT diagnosis results delivered a sensitivity of 87.0% (95% confidence interval, CI 82.2–90.7%), a specificity of 84.1% (95% CI 80.3–87.2%), and an overall accuracy of 85.1%. Both good consistency of OCT images and histological images and satisfactory diagnosis results were provided by OCT. Due to its features of non-invasion, real-time, and accuracy, OCT is valuable for the in-vivo evaluation of cervical lesions and has the potential to be one of the routine cervical diagnosis methods.


2014 ◽  
Vol 63 (2) ◽  
pp. 309-312 ◽  
Author(s):  
Georg Härter ◽  
Hagen Frickmann ◽  
Sebastian Zenk ◽  
Dominic Wichmann ◽  
Bettina Ammann ◽  
...  

We describe the case of a 16-year-old German male expatriate from Ghana who presented with obstipation, dysuria, dysaesthesia of the gluteal region and the lower limbs, bilateral plantar hypaesthesia and paraesthesia without pareses. A serum–cerebrospinal fluid (CSF) Schistosoma spp. specific antibody specificity index of 3.1 was considered highly suggestive of intrathecal synthesis of anti-Schistosoma spp. specific antibodies, although standardization of this procedure has not previously been described. Diagnosis was confirmed by detection of Schistosoma DNA in CSF by semi-quantitative real-time PCR at 100-fold concentration compared with serum. Accordingly the two diagnostic procedures, which have not previously been applied for routine diagnosis, appear to be useful for the diagnosis of neuroschistosomiasis. Clinical symptoms resolved following anthelmintic and anti-inflammatory therapy.


Sign in / Sign up

Export Citation Format

Share Document