scholarly journals Novel Energy System Design Workflow for Zero-Carbon Energy District Development

2021 ◽  
Vol 3 ◽  
Author(s):  
Bahador Samadzadegan ◽  
Soroush Samareh Abolhassani ◽  
Sanam Dabirian ◽  
Saeed Ranjbar ◽  
Hadise Rasoulian ◽  
...  

The growing urban population globally leads to higher greenhouse gas (GHG) emissions and stress on the electricity networks for meeting the increasing demand. In the early urban design stages, the optimization of the urban morphology and building physics characteristics can reduce energy demand. Local generation using renewable energy resources is also a viable option to reduce emissions and improve grid reliability. Notwithstanding, energy simulation and environmental impact assessment of urban building design strategies are usually not done until the execution planning stage. To address this research gap, a novel framework for designing energy systems for zero-carbon districts is developed. An urban building energy model is integrated with an urban energy system model in this framework. Dynamic prediction of heating and cooling demand and automatic sizing of different energy system configurations based on the calculated demands are the framework's primary capabilities. The workability of the framework has been tested on a case study for an urban area in Montreal to design and compare two different renewable energy systems comprising photovoltaic panels (PV), air-source, and ground source heat pumps. The case study results show that the urban building energy model could successfully predict the heating and cooling demands in multiple spatiotemporal resolutions, while the urban energy system model provides system solutions for achieving a zero-carbon or positive energy district.

2022 ◽  
Vol 306 ◽  
pp. 118035
Author(s):  
Somadutta Sahoo ◽  
Joost N.P. van Stralen ◽  
Christian Zuidema ◽  
Jos Sijm ◽  
Claudia Yamu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5724
Author(s):  
Luigi Bottecchia ◽  
Pietro Lubello ◽  
Pietro Zambelli ◽  
Carlo Carcasci ◽  
Lukas Kranzl

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open-source energy system models, it emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system used to reproduce and understand its behaviour under given conditions without seeking an optimal solution. In this paper, a new open-source energy system model is presented. Multi Energy Systems Simulator (MESS) is a modular, multi-energy carrier, multi-node model that allows the investigation of non optimal solutions by simulating an energy system. The model was built for urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be represented as well. In this work, the tool’s features are presented through a comparison between MESS and Calliope, a state of the art optimization model, to analyse and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development. The two models produced coherent results, showing differences that were tracked down to the different approaches. Based on the comparison conducted, general conclusions were drawn on the potential of simulating energy systems in terms of a more realistic description of smaller energy systems, lower computational times and increased opportunity for participatory processes in planning urban energy systems.


2021 ◽  
Author(s):  
Nicholas Martin ◽  
Cristina Madrid-López ◽  
Laura Talens-Peiró ◽  
Bryn Pickering

<p>A decarbonized, renewable energy system is generally assumed to represent a cleaner and more sustainable one. However, while they do promise day-to-day reductions in carbon emissions, many other environmental impacts could occur, and these are often overlooked. Indeed, in the two documents that form the EU Energy Union Strategy (COM/2015/080) the words ‘water’, ‘biodiversity’ or ‘raw materials’ do not appear. This ‘tunnel vision’ is often also adopted in current energy systems models, which do not generally provide a detailed analysis of all of the environmental impacts that accompany different energy scenarios. Ignoring the trade-offs between energy systems and other resources can result in misleading information and misguided policy making.</p><p>The environmental assessment module ENVIRO combines the bottom up, high resolution capabilities of life cycle assessment (LCA) with the hierarchical multi-scale upscaling capabilities of the Multi-Scale Integrated Assessment of Socioecosystem Metabolism (MuSIASEM) approach in an effort to address this gap. ENVIRO also takes the systemic trade-offs associated with the water-energy-food-(land-climate-etc.) nexus from MuSIASEM while considering the supply chain perspective of LCA. The module contains a built-in set of indicators that serve to assess the constraints that greenhouse gas (GHG) emissions, pollution, water use and raw material demands pose to renewable energy system scenarios. It can be used to assess the coherence between energy decarbonization targets and water or raw material targets; this can be extended to potentially any economic or political target that has a biophysical component.</p><p>In this work, we introduce the semantics and formalization aspects of ENVIRO, its integration with the energy system model Calliope, and the results of a first testing of the module in the assessment of decarbonization scenarios for the EU. The work is part of the research developed in the H2020 Project SENTINEL: Sustainable Energy Transition Laboratory (contract 837089).</p>


Sign in / Sign up

Export Citation Format

Share Document