scholarly journals Breathing in Birds and Crocodiles: What’s Different, What’s the Same, and Why Does It Matter?

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexandra McCartney ◽  
Drake Mark ◽  
Noah Gedja ◽  
Maya Gibb ◽  
Emily Adams ◽  
...  

At first glance, crocodiles and birds appear to be two very different groups of animals. Crocodiles tend to inhabit marshes and wetlands, while most birds tend to nest on dry land or in trees. Not only do they look very different, but while crocodiles walk on all fours and are excellent swimmers, most birds fly. Interestingly, researchers have found remarkable similarities in the way crocodiles and birds breathe! Different from how humans breathe, both birds and crocodiles have one-way air flow through their airways, meaning that air moves in a circular path into the lungs and back out. This article compares the structures of the respiratory systems in birds and crocodiles. We also examine how their respiratory systems are specialized for their unique environments and activities.

Sadhana ◽  
2007 ◽  
Vol 32 (4) ◽  
pp. 347-363 ◽  
Author(s):  
S. R. Kale ◽  
S. V. Veeravalli ◽  
H. D. Punekar ◽  
M. M. Yelmule
Keyword(s):  
Air Flow ◽  

1981 ◽  
Vol 24 (4) ◽  
pp. 1010-1013 ◽  
Author(s):  
Pitam Chandra ◽  
Louis D. Albright ◽  
Gerald E. Wilson
Keyword(s):  
Air Flow ◽  

Author(s):  
Yangbo Deng ◽  
Fengmin Su ◽  
Chunji Yan

The solar energy converter in Concentrated Solar Power (CSP) system, applies the solid frame structure of the ceramic foams to receive the concentrated solar radiation, convert it into thermal energy, and heat the air flow through the ceramic foams by convection heat transfer. In this paper, first, the pressure drops in the studied ceramic foams were measured under all kinds of flow condition. Based on the experimental results, an empirical numerical model was built for the air flow through ceramic foams. Second, a 3-D numerical model was built, for the receiving and conversion of the solar energy in the ceramic foams of the solar energy converter. Third, applying two aforementioned numerical models, the numerical studies of the thermal performance were carried out, for the solar energy converter filled with the ceramic foams, and results show that the structure parameters of the ceramic foams, the effective reflective area and the solar radiation intensity of the solar concentrator, have direct impacts on the absorptivity and conversion efficiency of the solar energy in the solar energy converter. And the results of the numerical studies are found to be in reasonable agreement with the experimental measurements. This paper will provide a reference for the design and manufacture of the solar energy converter with the ceramic foams.


Sign in / Sign up

Export Citation Format

Share Document