The Research of Energy Conversion and Heat Transfer in the Ceramic Foams of Solar Energy Converter

Author(s):  
Yangbo Deng ◽  
Fengmin Su ◽  
Chunji Yan

The solar energy converter in Concentrated Solar Power (CSP) system, applies the solid frame structure of the ceramic foams to receive the concentrated solar radiation, convert it into thermal energy, and heat the air flow through the ceramic foams by convection heat transfer. In this paper, first, the pressure drops in the studied ceramic foams were measured under all kinds of flow condition. Based on the experimental results, an empirical numerical model was built for the air flow through ceramic foams. Second, a 3-D numerical model was built, for the receiving and conversion of the solar energy in the ceramic foams of the solar energy converter. Third, applying two aforementioned numerical models, the numerical studies of the thermal performance were carried out, for the solar energy converter filled with the ceramic foams, and results show that the structure parameters of the ceramic foams, the effective reflective area and the solar radiation intensity of the solar concentrator, have direct impacts on the absorptivity and conversion efficiency of the solar energy in the solar energy converter. And the results of the numerical studies are found to be in reasonable agreement with the experimental measurements. This paper will provide a reference for the design and manufacture of the solar energy converter with the ceramic foams.

2019 ◽  
Vol 7 (2) ◽  
pp. 29
Author(s):  
Kim Nielsen ◽  
Jonas Thomsen

The critical function of keeping a floating Wave Energy Converter in position is done by a mooring system. Several WECs have been lost due to failed moorings, indicating that extreme loads, reliability and durability are very important aspects. An understanding of the interaction between the WEC’s motion in large waves and the maximum mooring loads can be gained by investigating the system at model scale supported by numerical models. This paper describes the testing of a novel attenuator WEC design called KNSwing. It is shaped like a ship facing the waves with its bow, which results in low mooring loads and small motions in most wave conditions when the structure is longer than the waves. The concept is tested using an experimental model at scale 1:80 in regular and irregular waves, moored using rubber bands to simulate synthetic moorings. The experimental results are compared to numerical simulations done using the OrcaFlex software. The experimental results show that the WEC and the mooring system survives well, even under extreme and breaking waves. The numerical model coefficient concerning the nonlinear drag term for the surge motion is validated using decay tests. The numerical results compare well to the experiments and, thereby, the numerical model can be further used to optimize the mooring system.


Author(s):  
Patrick Lorenz ◽  
Richard W. Kimball ◽  
Frank DiBella ◽  
Richard Smith ◽  
Scott Ring

This paper presents model-scale measurements and numerical models of a floating oscillating water column (OWC) system, consisting of an air cavity coupled with a Wells-type turbine energy extraction device. As waves travel through the OWC, air pressure cycles are generated. The oscillating water column captures the resulting pneumatic energy by directing the chamber pressure and air flow through the Wells turbine. A special feature of the system is a shuttering device that momentarily interrupts turbine air flow. The shuttering device is used to control the cavity pressure for optimum turbine performance. Shuttering in this manner can be shown to improve overall system efficiency up to 20% pressure. Physical scale models of the OWC system were tested in a wave tank at Maine Maritime Academy (MMA) at 1/30th scale as well as elastomeric diaphragm testing at 1/15th scale, under various conditions. Data from these tests, including cavity pressure response, turbine flow rate, and computed fluid power are discussed. In addition, numerical models of the system were developed using a parametric spring-mass-dashpot methodology and as well as a potential flow model derived for cavity geometry in a global wave field (see section 3). This paper describes the OWC system with adaptive shutter; comparison of experimental measurements to numerical model predictions; numerical model implementation and measurements of energy absorption/resonant effects within the chamber; and a potential flow derivation.


2011 ◽  
Vol 243-249 ◽  
pp. 6990-6996
Author(s):  
En Li ◽  
Jia Ping Liu

In Lhasa city, because of the abundant solar radiation, different direction walls absorb very different amount of solar energy. For the more efficient using of solar radiation, this difference should be reflected in the insulation design. By analysis on the typical year climate data, the absorption of solar radiation of different direction walls is clear. Compared with the inland city, Lhasa has more abundant solar energy and the bigger difference of direction, which means, the non-balance insulation is meaningful. The local test verifies the result of south and north room’s big difference thermal environment in the target building. By analyzing the permissible value of net heat loss by the envelope, the suggested limited value of overall heat transfer coefficient is proposed.


Sign in / Sign up

Export Citation Format

Share Document