scholarly journals Spectral Asymmetry of Near-Concentric Traveling Ionospheric Disturbances Due to Doppler-Shifted Atmospheric Gravity Waves

Author(s):  
Irfan Azeem

Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the prominent sources of variability in the ionosphere. Partially-concentric Traveling Ionospheric Disturbances (TIDs) associated with AGWs launched by convective storms have been reported in Total Electron Content (TEC) data from distributed networks of Global Navigation Satellite System (GNSS) receivers. In this paper, TEC data from GNSS receivers in the COntiguous United States (CONUS) are presented to examine AGWs in the ionosphere generated by a convective thunderstorm on April 28, 2014 over Mississippi (MS) and Tennessee (TN). Our analysis of the TID perturbations in the TEC data shows zonal asymmetry of the wave frequencies. This spectral asymmetry is examined to determine the effects of the background neutral wind on the intrinsic periods of the underlying AGWs. This work shows that if the relative motion of the TID wavefronts and the background neutral wind is in the opposite direction, the intrinsic periods will decrease and if they both travel in the same direction, the intrinsic periods will increase. Furthermore, our results show that the characteristics of the TIDs observed on April 28, 2014 in the TEC over CONUS are consistent with those of underlying AGWs being excited by a point source, such as a deep convection system.

2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The MSTIDs appear frequently as oscillating waves or wave-like structures in electron density induced by the passage of Atmospheric Gravity Waves (AGW) propagating through the neutral atmosphere and consequently, causing fluctuation in the ionospheric Total Electron Content (TEC). The TEC perturbations (dTEC) data are derived from dual frequency GPS-measurements. We have statistically analyzed the MSTIDs characteristics, occurrence rate, seasonal behavior as well as the interannual dependence. The results show a local and seasonal dependence of nighttime and daytime MSTIDs. The propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (12 ≤ period ≤ 53 mins), and dominant amplitude (0.08 ≤ amp ≤ ~1.5 TECU), with a propagation velocity higher at daytime than nighttime. The amplitudes of the MSTIDs increase with solar activity. The local MSTIDs Spatio-temporal heat reveals variability in disturbance occurrence time, but seems to be dominant within the hours of (Northwest: 1200–1600 LT) and (Northeast: 1000–1400 LT) in December solstice during daytime, and around (NW: 2100–0200 LT) and (NE: 1900–0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014) during the nighttime. The time series of MSTIDs regional distribution map is also generated. Atmospheric gravity waves (AGW) seems to be responsible for the daytime MSTIDs occurrence.


2020 ◽  
Vol 1 (1) ◽  
pp. 31-44
Author(s):  
Sergii Panasenko ◽  
Dmytro Kotov ◽  
Taras Zhivolup ◽  
Olexander Koloskov ◽  
Volodymyr Lisachenko

Based on the results of simultaneous ionosonde observations during low solar and weak magnetic activities, a coupling was found between diurnal and quasi-periodic variations in ionospheric parameters over magnetically conjugated regions, where the Ukrainian Antarctic Station (UAS) and Millstone Hill Observatory are located. A significant impact of the summer hemisphere on the nighttime variations of the F2 layer critical frequency foF2 in the magnetically conjugated region in the winter hemisphere was found. The most characteristic manifestation of this impact is the control of foF2 variations over the UAS not by the local sunset (sunrise), but by the sunset (sunrise) over Millstone Hill. It was found that the sunset over Millstone Hill leads to an increase in foF2 over the UAS, while the sunrise leads to a decrease in foF2 with a subsequent sharp increase. Both phenomena are associated with changes in the photoelectron flux from the northern hemisphere, corresponding changes in the electron temperature in the ionosphere above the UAS and the effect of these changes on the compression or rarefaction of the ionospheric plasma and changes in the plasmaspheric fluxes of H + ions. It was shown that the transition from nighttime to daytime conditions over both observation points was characterized by a significant decrease in the F2 layer peak height, and the difference in the values of this ionospheric parameter over Millstone Hill and UAS at night is due to seasonal differences in the thermospheric circulation and the difference in the behavior of the ionospheric parameters in the Northern and Southern hemispheres. Manifestations of atmospheric gravity waves, caused by the passage of local sunrise terminators, as traveling ionospheric disturbances with periods of about 90 and 75 – 120 mins over Millstone Hill and UAS, respectively, were found. These waves were most likely generated in the region located between the ionospheric F1 and F2 layers, where the sharp gradients in the electron and ion densities occur during changes in the intensity of solar radiation. It is confirmed that wave disturbances in atmospheric and ionospheric parameters can be transferred between magnetically conjugated regions by slow magnetohydrodynamic waves generated both at the heights of the ionospheric dynamo region due to the modulation of atmospheric and ionospheric parameters by atmospheric waves and the occurrence of external currents, and at the top of the plasmaspheric tube, where sharp plasma compression and heating or rarefaction and cooling occur during the passage of the solar terminator. Keywords: the ionosphere, F2 region, ionosonde measurements, geomagnetic field tube, magnetoconjugate region coupling, atmospheric gravity waves, traveling ionospheric disturbances, generation of slow magnetohydrodynamic waves


2013 ◽  
Vol 31 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Y. Otsuka ◽  
K. Suzuki ◽  
S. Nakagawa ◽  
M. Nishioka ◽  
K. Shiokawa ◽  
...  

Abstract. Two-dimensional structures of medium-scale traveling ionospheric disturbances (MSTIDs) over Europe have been revealed, for the first time, by using maps of the total electron content (TEC) obtained from more than 800 GPS receivers of the European GPS receiver networks. From statistical analysis of the TEC maps obtained 2008, we have found that the observed MSTIDs can be categorized into two groups: daytime MSTID and nighttime MSTID. The daytime MSTID frequently occurs in winter. Its maximum occurrence rate in monthly and hourly bin exceeds 70% at lower latitudes over Europe, whereas it is approximately 45% at higher latitudes. Since most of the daytime MSTIDs propagate southward, we speculate that they could be caused by atmospheric gravity waves in the thermosphere. The nighttime MSTIDs also frequently occur in winter but most of them propagate southwestward, in a direction consistent with the theory that polarization electric fields play an important role in generating the nighttime MSTIDs. The nighttime MSTID occurrence rate shows distinct latitudinal difference: The maximum of the occurrence rate in monthly and hourly bin is approximately 50% at lower latitudes in Europe, whereas the nighttime MSTID was rarely observed at higher latitudes. We have performed model calculations of the plasma density perturbations caused by a gravity wave and an oscillating electric field to reproduce the daytime and nighttime MSTIDs, respectively. We find that TEC perturbations caused by gravity waves do not show dip angle dependencies, while those caused by the oscillating electric field have a larger amplitude at lower latitudes. These dip angle dependencies of the TEC perturbation amplitude could contribute to the latitudinal variation of the MSTID occurrence rate. Comparing with previous studies, we discuss the longitudinal difference of the nighttime MSTID occurrence rate, along with the E- and F-region coupling processes. The seasonal variation, of the nighttime MSTID occurrence rate in Europe, is not consistent with the theory that the longitudinal and seasonal variations of the nighttime MSTID occurrence could be attributed to those of the Es layer occurrence.


2009 ◽  
Vol 71 (17-18) ◽  
pp. 2013-2016 ◽  
Author(s):  
J. MacDougall ◽  
M.A. Abdu ◽  
I. Batista ◽  
P.R. Fagundes ◽  
Y. Sahai ◽  
...  

2019 ◽  
Vol 16 (2) ◽  
pp. 130
Author(s):  
Asnawi Husin ◽  
Buldan Muslim

Medium Scale Travelling Ionospheric Disturbance (MSTID), thought to be manifestation of atmospheric gravity wave (AGW) in the ionospheric altitude that propagates horizontally and effects on in the electron density structure of ionosphere. These atmospheric gravity waves sourced  from lower atmospheric activities such as typhoons, volcanic eruptions and tsunamis. Wave energy by its coupling induction process can travel to the ionosphere region. It has been understood that the TID's wave structure have an impact on the propagation of radio waves in the ionosphere so that it will affect the performance of navigation satellite-based positioning measurements. Based on Aceh tsunami in December 2004, this study aimed to investigation of the induction of atmospheric gravity waves in the ionosphere using total electron content (TEC) data from the Sumatra GPS network (Sumatra GPS Array, SUGAR). The detection technique of TEC changes due to AGW induction with a filter to separate medium scale disturbance at the ionospheric pierce point at an altitude of 350 km (IPP, Ionospheric Pierce Point). The results show the horizontal wavelength of a medium-scale TID around 180 ± 12 Km with a velocities of around 376 ± 9 ms-1. Based on two-dimensional map, the TID moves to the southeast.


Sign in / Sign up

Export Citation Format

Share Document