scholarly journals Twin High-Resolution, High-Speed Imagers for the Gemini Telescopes: Instrument Description and Science Verification Results

Author(s):  
Nicholas J. Scott ◽  
Steve B. Howell ◽  
Crystal L. Gnilka ◽  
Andrew W. Stephens ◽  
Ricardo Salinas ◽  
...  

Two new imaging instruments, ‘Alopeke and Zorro, were designed, built, and commissioned at the Gemini-North and Gemini-South telescopes in 2018 and 2019, respectively. Here we describe them and present the results from over a year of operation. The two identical instruments are based on the legacy of the DSSI (Differential Speckle Survey Instrument) instrument, successfully used for years at the WIYN and the Gemini telescopes in Hawaii and Chile. ‘Alopeke and Zorro are dual-channel imagers having both speckle (6.7″) and “wide-field” (∼1 arcminute) field-of-view options. They were built to primarily perform speckle interferometry providing diffraction-limited imagery at optical wavebands, yielding pixel scale uncertainties of ±0.21 mas, position angle uncertainties of ±0.7◦, and photometric uncertainties of Δm ± 0.02–0.04 magnitudes (for the blue and red channels, respectively) when run through the standard data reduction pipeline. One of their main scientific roles is the validation and characterization of exoplanets and their host stars as discovered by transit surveys such as the NASA Kepler, K2, and TESS missions. The limiting magnitude for speckle observations at Gemini can be quite faint (r ∼18 in good observing conditions) but typically the observed targets are brighter. The instruments can also function as conventional CCD imagers providing a 1 arc-minute field of view and allowing simultaneous two-color, high-speed time-series operation. These resident visitor instruments are remotely operable and are available for use by the community via the peer-reviewed proposal process.

2012 ◽  
Vol 8 (S293) ◽  
pp. 378-381
Author(s):  
Gerard T. van Belle ◽  
Kaspar von Braun ◽  
Tabetha Boyajian ◽  
Gail Schaefer

AbstractExoplanet transit events are attractive targets for the ultrahigh-resolution capabilities afforded by optical interferometers. The intersection of two developments in astronomy enable direct imaging of exoplanet transits: first, improvements in sensitivity and precision of interferometric instrumentation; and second, identification of ever-brighter host stars. Efforts are underway for the first direct high-precision detection of closure phase signatures with the CHARA Array and Navy Precision Optical Interferometer. When successful, these measurements will enable recovery of the transit position angle on the sky, along with characterization of other system parameters, such as stellar radius, planet radius, and other parameters of the transit event. This technique can directly determine the planet's radius independent of any outside observations, and appears able to improve substantially upon other determinations of that radius; it will be possible to extract wavelength dependence of that radius determination, for connection to characterization of planetary atmospheric composition & structure. Additional directly observed parameters - also not dependent on transit photometry or spectroscopy - include impact parameter, transit ingress time, and transit velocity.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 854 ◽  
Author(s):  
Gaoge Lian ◽  
Yongshun Liu ◽  
KeKai Tao ◽  
Huaming Xing ◽  
Ruxia Huang ◽  
...  

Curved compound eyes have generated great interest owing to the wide field of view but the application of devices is hindered for the lack of proper detectors. One-lens curved compound eyes with multi-focal microlenses provide a solution for wide field imaging integrated in a commercial photo-detector. However, it is still a challenge for manufacturing this kind of compound eye. In this paper, a rapid and accurate method is proposed by a combination of photolithography, hot embossing, soft photolithography, and gas-assisted deformation techniques. Microlens arrays with different focal lengths were firstly obtained on a polymer, and then the planar structure was converted to the curved surface. A total of 581 compound eyes with diameters ranging from 152.8 µm to 240.9 µm were successfully obtained on one curved surface within a few hours, and the field of view of the compound eyes exceeded 108°. To verify the characteristics of the fabricated compound eyes, morphology deviation was measured by a probe profile and a scanning electron microscope. The optical performance and imaging capability were also tested and analyzed. As a result, the ommatidia made up of microlenses showed not only high accuracy in morphology, but also imaging uniformity on a focal plane. This flexible massive fabrication of compound eyes indicates great potential for miniaturized imaging systems.


2014 ◽  
Vol 53 (13) ◽  
pp. C54 ◽  
Author(s):  
D. L. Marks ◽  
P. R. Llull ◽  
Z. Phillips ◽  
J. G. Anderson ◽  
S. D. Feller ◽  
...  

2015 ◽  
Vol 10 (S318) ◽  
pp. 306-310
Author(s):  
Hong-Kyu Moon ◽  
Myung-Jin Kim ◽  
Hong-Suh Yim ◽  
Young-Jun Choi ◽  
Young-Ho Bae ◽  
...  

AbstractKorea Microlensing Telescope Network (KMTNet) which consists of three identical 1.6 m wide-field telescopes with 18k × 18k CCDs, is the first optical survey system of its kind. The combination of fast optics and the mosaic CCD delivers seeing limited images over a 4 square degrees field of view. The main science goal of KMTNet is the discovery and characterization of exoplanets, yet it also offers various other science applications including DEep Ecliptic Patrol of SOUTHern sky (DEEP-South). The aim of DEEP-South is to discover and characterize asteroids and comets, including Near Earth Objects (NEOs). We started test runs last February after commissioning, and will return to normal operations in October 2015. A summary of early results from the test runs will be presented.


Optica ◽  
2015 ◽  
Vol 2 (12) ◽  
pp. 1086 ◽  
Author(s):  
Patrick Llull ◽  
Lauren Bange ◽  
Zachary Phillips ◽  
Kyle Davis ◽  
Daniel L. Marks ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2347
Author(s):  
Cui-Hong Li ◽  
Deng-Feng Li ◽  
Yu Zheng ◽  
Fang-Wen Sun ◽  
A. M. Du ◽  
...  

Polarization property characterization of the microwave (MW) field with high speed and resolution is vitally beneficial as the circularly-polarized MW field plays an important role in the development of quantum technologies and satellite communication technologies. In this work, we propose a scheme to detect the axial ratio of the MW field with optical diffraction limit resolution with a nitrogen vacancy (NV) center in diamond. Firstly, the idea of polarization selective detection of the MW magnetic field is carried out using a single NV center implanted in a type-IIa CVD diamond with a confocal microscope system achieving a sensitivity of 1.7 μT/Hz. Then, high speed wide-field characterization of the MW magnetic field at the submillimeter scale is realized by combining wide-field microscopy and ensemble NV centers inherent in a general CVD diamond. The precision axial ratio can be detected by measuring the magnitudes of two counter-rotating circularly-polarized MW magnetic fields. The wide-field detection of the axial ratio and strength parameters of microwave fields enables high speed testing of small-scale microwave devices.


Sign in / Sign up

Export Citation Format

Share Document