scholarly journals Online Adaptive Parameter Estimation for Quadrotors

Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 167 ◽  
Author(s):  
Jun Zhao ◽  
Xian Wang ◽  
Guanbin Gao ◽  
Jing Na ◽  
Hongping Liu ◽  
...  

The stability and robustness of quadrotors are always influenced by unknown or immeasurable system parameters. This paper proposes a novel adaptive parameter estimation technology to obtain high-accuracy parameter estimation for quadrotors. A typical mathematical model of quadrotors is first obtained, which can be used for parameter estimation. Then, an expression of the parameter estimation error is derived by introducing a set of auxiliary filtered variables. Moreover, an augmented matrix is constructed based on the obtained auxiliary filtered variables, which is then used to design new adaptive laws to achieve exponential convergence under the standard persistent excitation (PE) condition. Finally, a simulation and an experimental verification for a typical quadrotor system are shown to illustrate the effectiveness of the proposed method.

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Rui Xu ◽  
Miaolei Zhou ◽  
Xiaobo Tan

Abstract Hysteresis is a nonlinear characteristic ubiquitously exhibited by smart material sensors and actuators, such as piezoelectric actuators and shape memory alloys. The Prandtl–Ishlinskii (PI) operator is widely used to describe hysteresis of smart material systems due to its simple structure and the existence of analytical inverse. A PI operator consists of a weighted superposition of play (backlash) operators. While adaptive estimation of the weights for PI operators has been reported in the literature, rigorous analysis of parameter convergence is lacking. In this article, we establish persistent excitation and thus parameter convergence for adaptive weight estimation under a rather modest condition on the input to the PI operator. The analysis is further supported via simulation, where a recursive least square (RLS) method is adopted for parameter estimation.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Author(s):  
Pileun Kim ◽  
Jonathan Rogers ◽  
Jie Sun ◽  
Erik Bollt

Parameter estimation is an important topic in the field of system identification. This paper explores the role of a new information theory measure of data dependency in parameter estimation problems. Causation entropy is a recently proposed information-theoretic measure of influence between components of multivariate time series data. Because causation entropy measures the influence of one dataset upon another, it is naturally related to the parameters of a dynamical system. In this paper, it is shown that by numerically estimating causation entropy from the outputs of a dynamic system, it is possible to uncover the internal parametric structure of the system and thus establish the relative magnitude of system parameters. In the simple case of linear systems subject to Gaussian uncertainty, it is first shown that causation entropy can be represented in closed form as the logarithm of a rational function of system parameters. For more general systems, a causation entropy estimator is proposed, which allows causation entropy to be numerically estimated from measurement data. Results are provided for discrete linear and nonlinear systems, thus showing that numerical estimates of causation entropy can be used to identify the dependencies between system states directly from output data. Causation entropy estimates can therefore be used to inform parameter estimation by reducing the size of the parameter set or to generate a more accurate initial guess for subsequent parameter optimization.


2014 ◽  
Vol 631-632 ◽  
pp. 710-713 ◽  
Author(s):  
Xian Yong Wu ◽  
Hao Wu ◽  
Hao Gong

Anti-synchronization of two different chaotic systems is investigated. On the basis of Lyapunov theory, adaptive control scheme is proposed when system parameters are unknown, sufficient conditions for the stability of the error dynamics are derived, where the controllers are designed using the sum of the state variables in chaotic systems. Numerical simulations are performed for the Chen and Lu systems to demonstrate the effectiveness of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document