scholarly journals Best Trade-Off Point Method for Efficient Resource Provisioning in Spark

Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 190
Author(s):  
Peter Nghiem

Considering the recent exponential growth in the amount of information processed in Big Data, the high energy consumed by data processing engines in datacenters has become a major issue, underlining the need for efficient resource allocation for more energy-efficient computing. We previously proposed the Best Trade-off Point (BToP) method, which provides a general approach and techniques based on an algorithm with mathematical formulas to find the best trade-off point on an elbow curve of performance vs. resources for efficient resource provisioning in Hadoop MapReduce. The BToP method is expected to work for any application or system which relies on a trade-off elbow curve, non-inverted or inverted, for making good decisions. In this paper, we apply the BToP method to the emerging cluster computing framework, Apache Spark, and show that its performance and energy consumption are better than Spark with its built-in dynamic resource allocation enabled. Our Spark-Bench tests confirm the effectiveness of using the BToP method with Spark to determine the optimal number of executors for any workload in production environments where job profiling for behavioral replication will lead to the most efficient resource provisioning.

2019 ◽  
Vol 15 (4) ◽  
pp. 13-29
Author(s):  
Harvinder Chahal ◽  
Anshu Bhasin ◽  
Parag Ravikant Kaveri

The Cloud environment is a large pool of virtually available resources that perform thousands of computational operations in real time for resource provisioning. Allocation and scheduling are two major pillars of said provisioning with quality of service (QoS). This involves complex modules such as: identification of task requirement, availability of resource, allocation decision, and scheduling operation. In the present scenario, it is intricate to manage cloud resources, as Service provider aims to provide resources to users on productive cost and time. In proposed research article, an optimized technique for efficient resource allocation and scheduling is presented. The proposed policy used heuristic based, ant colony optimization (ACO) for well-ordered allocation. The suggested algorithm implementation done using simulation, shows better results in terms of cost, time and utilization as compared to other algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2994 ◽  
Author(s):  
Takshi Gupta ◽  
Fabio Arena ◽  
Ilsun You

Unmanned aerial vehicles (UAVs) allow better coverage, enhanced connectivity, and elongated lifetime when used in telecommunications. However, these features are predominately affected by the policies used for sharing resources amongst the involved nodes. Moreover, the architecture and deployment strategies also have a considerable impact on their functionality. Recently, many researchers have suggested using layer-based UAV deployment, which allows better communications between the entities. Regardless of these solutions, there are a limited number of studies which focus on connecting layered-UAVs to everything (U2X). In particular, none of them have actually addressed the aspect of resource allocation. This paper considers the issue of resource allocation and helps decide the optimal number of transfers amongst the UAVs, which can conserve the maximum amount of energy while increasing the overall probability of resource allocation. The proposed approach relies on mutual-agreement based reward theory, which considers Minkowski distance as a decisive metric and helps attain efficient resource allocation for backhaul-aware U2X. The effectiveness of the proposed solution is demonstrated using Monte-Carlo simulations.


2017 ◽  
Vol 17 (3) ◽  
pp. 47-58
Author(s):  
Nguyen Minh Nhut Pham ◽  
Van Son Le ◽  
Ha Huy Cuong Nguyen

Abstract This paper is an extended and updated version, presented at the INDIA 2017 conference. Optimal resource provisioning for virtual services in the Cloud computing is one of the concerns nowadays. For cloud computing service providers, reducing the number of physical machines providing resources for virtual services in cloud computing is one of the efficient ways to reduce the amount of energy consumption, which in turn enhances the performance of data centers. Multi-dimensional resource provisioning on a Heterogeneous Shared Hosting Platforms for virtual services is known as a NP-hard problem. Therefore, it is necessary to apply the metaheuristic algorithms for estimating the outcome of the problem. In this study, we propose the resource allocation problem for reducing the energy consumption. ECRA-SA algorithms were designed to solve it and were evaluated through CloudSim simulation tool compared with FFD algorithm. The experimental results show that the proposed ECRA-SA algorithm yields a better performance than FFD algorithm.


2009 ◽  
Vol E92-B (2) ◽  
pp. 533-543 ◽  
Author(s):  
Jae Soong LEE ◽  
Jae Young LEE ◽  
Soobin LEE ◽  
Hwang Soo LEE

2020 ◽  
Vol 13 (5) ◽  
pp. 1008-1019
Author(s):  
N. Vijayaraj ◽  
T. Senthil Murugan

Background: Number of resource allocation and bidding schemes had been enormously arrived for on demand supply scheme of cloud services. But accessing and presenting the Cloud services depending on the reputation would not produce fair result in cloud computing. Since the cloud users not only looking for the efficient services but in major they look towards the cost. So here there is a way of introducing the bidding option system that includes efficient user centric behavior analysis model to render the cloud services and resource allocation with low cost. Objective: The allocation of resources is not flexible and dynamic for the users in the recent days. This gave me the key idea and generated as a problem statement for my proposed work. Methods: An online auction framework that ensures multi bidding mechanism which utilizes user centric behavioral analysis to produce the efficient and reliable usage of cloud resources according to the user choice. Results: we implement Efficient Resource Allocation using Multi Bidding Model with User Centric Behavior Analysis. Thus the algorithm is implemented and system is designed in such a way to provide better allocation of cloud resources which ensures bidding and user behavior. Conclusion: Thus the algorithm Efficient Resource Allocation using Multi Bidding Model with User Centric Behavior Analysis is implemented & system is designed in such a way to provide better allocation of cloud resources which ensures bidding, user behavior. The user bid data is trained accordingly such that to produce efficient resource utilization. Further the work can be taken towards data analytics and prediction of user behavior while allocating the cloud resources.


Sign in / Sign up

Export Citation Format

Share Document