scholarly journals Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3174
Author(s):  
Jie Yu ◽  
Biao Dong ◽  
Minmeng Zhao ◽  
Long Liu ◽  
Tuoyu Geng ◽  
...  

Probiotics are a substitute for antibiotics in the sense of intestinal health maintenance. Clostridium butyricum and Bacillus subtilis, as probiotic bacteria, have been widely used in animal production. The aim of this study was to investigate the effects of the two probiotic bacteria in geese. A total of 288 1-day old, healthy Yangzhou geese were randomly assigned into 4 groups (A, B, C and D) with 6 replicates of 12 birds each. Group A, as control, was fed a basal diet, and the treatment groups (B, C and D) were fed the basal diet supplemented with 250 mg/kg Clostridium butyricum (the viable count was 3.0 × 106 CFU/g), 250 mg/kg Bacillus subtilis (the viable count was 2.0 × 107 CFU/g), or a combination of the two probiotic bacteria for 70 days, respectively. The results indicated that: compared with the control group, dietary probiotics (1) promoted the growth and feed intake of the geese, (2) increased the absolute weight of duodenum, (3) increased the antioxidative capacity (total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX)) of intestinal mucosa, (4) improved intestinal morphology (the ratio of villus height to crypt depth), (5) but did not induce inflammation and changes of tight junction in the intestine, which was indicated by no induction of pro/inflammatory cytokines (IL-1β, IL-6, IL-10, TNFAIP3) and tight junction related genes (TJP1 and OCLN). Moreover, dietary probiotics increased the relative abundances of Firmicutes phylum and Lactobacillus genus and decreased the relative abundances of Proteobacteria phylum or Ralstonia genus in the intestinal content. In addition, the alpha diversity (observed species, Chao1, and estimate the number of OTUs in the community(ACE)) was reduced and the predicted functions of intestinal microflora, including peptidases, carbon fixation and metabolic function of starch and sugar, were enhanced by dietary probiotics. In conclusion, dietary probiotics promote the growth of geese by their positive effects on intestinal structure and function, the composition and functions of gut microflora, and intestinal antioxidative capacity.

Micron ◽  
1993 ◽  
Vol 24 (3) ◽  
pp. 325-352 ◽  
Author(s):  
Michel Hirsch ◽  
Walter Noske

2013 ◽  
Vol 80 (3) ◽  
pp. 917-927 ◽  
Author(s):  
Mun Su Rhee ◽  
Lusha Wei ◽  
Neha Sawhney ◽  
John D. Rice ◽  
Franz J. St. John ◽  
...  

ABSTRACTXylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability ofBacillus subtilissubsp.subtilisstrain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by thexynAandxynCgenes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of thexynAandxynCgenes, individually and in combination, were evaluated for xylan utilization and formation of acidic xylooligosaccharides. Parent strain 168 depolymerizes methylglucuronoxylans (MeGXn), releasing the xylobiose and xylotriose utilized for growth and accumulating the aldouronate methylglucuronoxylotriose (MeGX3) with some methylglucuronoxylotetraose (MeGX4). The combined GH11 and GH30 activities process the products generated by their respective actions on MeGXnto release a maximal amount of neutral xylooligosaccharides for assimilation and growth, at the same time forming MeGX3in which the internal xylose is substituted with methylglucuronate (MeG). Deletion ofxynAresults in the accumulation of β-1,4-xylooligosaccharides with degrees of polymerization ranging from 4 to 18 and an average degree of substitution of 1 in 7.2, each with a single MeG linked α-1,2 to the xylose penultimate to the xylose at the reducing terminus. Deletion of thexynCgene results in the accumulation of aldouronates comprised of 4 or more xylose residues in which the MeG may be linked α-1,2 to the xylose penultimate to the nonreducing xylose. TheseB. subtilislines may be used for the production of acidic xylooligosaccharides with applications in human and veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document