antioxidative capacity
Recently Published Documents


TOTAL DOCUMENTS

382
(FIVE YEARS 97)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
C. Chen ◽  
Y.Y. Liu ◽  
H.L. Li ◽  
J.B. Zuo ◽  
G.J. Yu ◽  
...  

Background: Meat quality in pigs is an extremely important economic trait. The Shaziling pig is representative of good meat quality but has been scarcely utilized because of the unpleasant growth rate and lean percentage. Methods: The differences of muscle chemical composition, amino acids profile and antioxidative capacity were evaluated among [(Berkshire × Shaziling) × (Berkshire × Shaziling) (BS × (B × S)], (Berkshire × Shaziling) × Shaziling [(B × S) × S], Shaziling × (Berkshire × Shaziling) [S × (B × S)] and Shaziling (S × S) pigs. Result: Four groups had plentiful contents of mineral elements (Ca, Zn, Na, K, Cu, Mg, Mn) and abundant amino acids content and no obvious differences in diameters of myofibers and adipocytes were found among four groups. In addition, (B × S) × S pigs had the highest crude protein content, possessed comprehensive nutrient in amino acids and showed preferable antioxidative capacity, suggesting that the meat of (B × S) × S pigs has optimal shelf life.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Baoyang Xu ◽  
Wenxia Qin ◽  
Yunzheng Xu ◽  
Wenbo Yang ◽  
Yuwen Chen ◽  
...  

Antioxidant polyphenols from plants are potential dietary supplementation to alleviate early weaning-induced intestinal disorders in piglets. Recent evidences showed polyphenol quercetin could reshape gut microbiota when it functioned as anti-inflammation or antioxidation agents in rodent models. However, the effect of dietary quercetin supplementation on intestinal disorders and gut microbiota of weanling piglets, along with the role of gut microbiota in this effect, both remain unclear. Here, we determined the quercetin’s effect on attenuating diarrhea, intestinal damage, and redox imbalance, as well as the role of gut microbiota by transferring the quercetin-treated fecal microbiota to the recipient piglets. The results showed that dietary quercetin supplementation decreased piglets’ fecal scores improved intestinal damage by increasing tight junction protein occludin, villus height, and villus height/crypt depth ratio but decreased crypt depth and intestinal epithelial apoptosis (TUNEL staining). Quercetin also increased antioxidant capacity indices, including total antioxidant capacity, catalase, and glutathione/oxidized glutathione disulfide but decreased oxidative metabolite malondialdehyde in the jejunum tissue. Fecal microbiota transplantation (FMT) from quercetin-treated piglets had comparable effects on improving intestinal damage and antioxidative capacity than dietary quercetin supplementation. Further analysis of gut microbiota using 16S rDNA sequencing showed that dietary quercetin supplementation or FMT shifted the structure and increased the diversity of gut microbiota. Especially, anaerobic trait and carbohydrate metabolism functions of gut microbiota were enriched after dietary quercetin supplementation and FMT, which may owe to the increased antioxidative capacity of intestine. Quercetin increased the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum, Clostridium celatum, and Prevotella copri but decreased the relative abundances of Proteobacteria, Lactobacillus coleohominis, and Ruminococcus bromii. Besides, quercetin-shifted bacteria and carbohydrate metabolites short chain fatty acids were significantly related to the indices of antioxidant capacity and intestinal integrity. Overall, dietary quercetin supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant capacity and regulating gut microbial structure and metabolism in piglets.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1804
Author(s):  
Joachim Greilberger ◽  
Ralf Herwig ◽  
Michaela Greilberger ◽  
Philipp Stiegler ◽  
Reinhold Wintersteiger

We have recently shown that a combined solution containing alpha-ketoglutarate (aKG) and 5-hydroxymethyl-furfural (5-HMF) might have anti-tumoral potential due to its antioxidative activities. The question arises if these substances have caspase-3- and apoptosis-activating effects on the cell proliferation in Jurkat and HF-SAR cells. Antioxidative capacity of several combined aKG + 5-HMF solution was estimated by cigarette smoke radical oxidized proteins of fetal calf serum (FCS) using the estimation of carbonylated proteins. The usage of 500 µg/mL aKG + 166.7 µg/mL 5-HMF showed the best antioxidative capacity to inhibit protein modification of more than 50% compared to control measurement. A Jurkat cell line and human fibroblasts (HF-SAR) were cultivated in the absence or presence of combined AKG + 5-HMF solutions between 0 µg/mL aKG + 0 µg/mL 5-HMF and different concentrations of 500 µg/mL aKG + 166.7 µg/mL 5-HMF. Aliquots of Jurkat cells were tested for cell proliferation, mitochondrial activity, caspase activity, apoptotic cells and of the carbonylated protein content as marker of oxidized proteins in cell lysates after 24, 48, and 72 h of incubation. The combined solutions of aKG + 5-HMF were shown to cause a reduction in Jurkat cell growth that was dependent on the dose and incubation time, with the greatest reductions using 500 µg/mL aKG + 166.7 µg/mL 5-HMF after 24 h of incubation compared to 24 h with the control (22,832 cells vs. 32,537 cells), as well as after 48 h (21,243 vs. 52,123 cells) and after 72 h (23,224 cells). Cell growth was totally inhibited by the 500 µg/mL AKG + 166.7 µg/mL solution between 0 and 72 h of incubation compared to 0 h of incubation for the control. The mitochondrial activity measurements supported the data on cell growth in Jurkat cells: The highest concentration of 500 µg/mL aKG + 166.7 µg/mL 5-HMF was able to reduce the mitochondrial activity over 24 h (58.9%), 48 h (28.7%), and 72 h (9.9%) of incubation with Jurkat cells compared not only to the control incubation, but also to the concentrations of 500 µg/mL aKG + 166.7 µg/mL 5-HMF or 375 µg/mL aKG 125 µg/mL 5-HMF, which were able to significantly reduce the mitochondrial activity after 48 h (28.7% or 35.1%) and 72 h (9.9% or 18.2%) compared to 24 h with the control (100%). A slight increase in cell proliferation was found in HF-SAR using the highest concentration (500 µg/mL aKG + 166.7 µg/mL 5-HMF) between 0 h and 72 h incubation of 140%, while no significant differences were found in the mitochondrial activity of HF-SAR in the absence or presence of several combined aKG + 5-HMF solutions. The solutions with 500 µg/mL aKG + 166.7 µg/mL 5-HMF or 250 µg/mL aKG + 83.3 µg/mL 5-HMF showed a significantly higher caspase activity (51.6% or 13.5%) compared to the control (2.9%) in addition to a higher apoptosis rate (63.2% or 31.4% vs. control: 14.9%). Cell lysate carbonylated proteins were significantly higher in Jurkat cells compared to HF-SAR cells (11.10 vs. 2.2 nmol/mg). About 72 h incubation of Jurkat cells with 500 µg/mL aKG + 166.7 µg/mL 5-HMF or 250 µg/mL aKG + 83.3 µg/mL 5-HMF reduced significantly the carbonylated protein content down to 5.55 or 7.44 nmol/mg whereas only the 500 µg/mL aKG + 166.7 µg/mL 5-HMF solution showed a significant reduction of carbonylated proteins of HF-SAR (1.73 nmol/mg).


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3174
Author(s):  
Jie Yu ◽  
Biao Dong ◽  
Minmeng Zhao ◽  
Long Liu ◽  
Tuoyu Geng ◽  
...  

Probiotics are a substitute for antibiotics in the sense of intestinal health maintenance. Clostridium butyricum and Bacillus subtilis, as probiotic bacteria, have been widely used in animal production. The aim of this study was to investigate the effects of the two probiotic bacteria in geese. A total of 288 1-day old, healthy Yangzhou geese were randomly assigned into 4 groups (A, B, C and D) with 6 replicates of 12 birds each. Group A, as control, was fed a basal diet, and the treatment groups (B, C and D) were fed the basal diet supplemented with 250 mg/kg Clostridium butyricum (the viable count was 3.0 × 106 CFU/g), 250 mg/kg Bacillus subtilis (the viable count was 2.0 × 107 CFU/g), or a combination of the two probiotic bacteria for 70 days, respectively. The results indicated that: compared with the control group, dietary probiotics (1) promoted the growth and feed intake of the geese, (2) increased the absolute weight of duodenum, (3) increased the antioxidative capacity (total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX)) of intestinal mucosa, (4) improved intestinal morphology (the ratio of villus height to crypt depth), (5) but did not induce inflammation and changes of tight junction in the intestine, which was indicated by no induction of pro/inflammatory cytokines (IL-1β, IL-6, IL-10, TNFAIP3) and tight junction related genes (TJP1 and OCLN). Moreover, dietary probiotics increased the relative abundances of Firmicutes phylum and Lactobacillus genus and decreased the relative abundances of Proteobacteria phylum or Ralstonia genus in the intestinal content. In addition, the alpha diversity (observed species, Chao1, and estimate the number of OTUs in the community(ACE)) was reduced and the predicted functions of intestinal microflora, including peptidases, carbon fixation and metabolic function of starch and sugar, were enhanced by dietary probiotics. In conclusion, dietary probiotics promote the growth of geese by their positive effects on intestinal structure and function, the composition and functions of gut microflora, and intestinal antioxidative capacity.


2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Ticuţa Negreanu-Pîrjol ◽  
Bogdan-Ştefan Negreanu-Pîrjol ◽  
Dan Razvan Popoviciu

Particularly interest on herbs and plant extracts is due to their content of active principles with remarkable pharmacological properties. Different vegetal species contain natural antioxidants (polyphenols) used for their dermatological anti-inflammatory and healing activity, justified by their action on free radicals. The aim of this paper was to obtain selected phytopharmaceuticals formulations type gels with an increased antioxidant potential based on a mixture of fluid extracts from seaweeds species in the phylum Chlorophyta, Cladophora vagabunda (L.) C. Hoek, in the family Cladophoraceae, Ulva lactuca (L.) syn. Ulva rigida (L.), in the family Ulvaceae (sea lettuce) and species in the phylum Rhodophyta, Ceramium rubrum C. Agardh, in the famiy Ceramiaceae, frequently presents along the Romanian Black Sea coast. Fluid extracts concentration 10 percent were obtained using cold maceration extraction method, in solvents ethylic alcohol 40 percent and 70 percent. The obtained vegetal extracts were mixed in different ratio and analysed for physico-chemical properties, for the content of total phenols, chlorophylls, cartenoids, flavonoids and antioxidative capacity by photochemiluminescence method (ACL, Analytik Jena AG procedure). The selected mixed fluid extracts with greatest content of polyphenols and antioxidant activity were used for obtaining pharmaceutical forms type gels which were analyzed for the physical-chemical properties appearance, pH, spredability and total antioxidative capacity. Preliminary results emphasized that proposed pharmaceutical forms type gels had an appreciable antioxidant activity correlated with a good stability, an increased polyphenols content and would represent a possible new dermatological anti-inflammatory and healing preparation.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 901
Author(s):  
Jan Berend Lingens ◽  
Amr Abd El-Wahab ◽  
Juliano Cesar de Paula Dorigam ◽  
Andreas Lemme ◽  
Ralph Brehm ◽  
...  

Footpad dermatitis and hepatic lipidosis are health problems in fattening turkeys where a positive influence of higher methionine content in feed is discussed. The effects of the methionine supplements DL-methionine (DLM) and liquid methionine hydroxyl analogue free acid (MHA-FA) under the aspect of low protein diets were investigated in this study based on performance parameters, footpad health, liver health and oxidative stress. In this study, 80 female turkeys (B.U.T. Big 6) of 63 day-old, were randomly assigned to four groups characterising a 2 × 2 factorial design with five replicates each over five weeks. The groups were fed with diets differing in methionine source (DLM vs. MHA-FA, assuming a biological activity of MHA-FA of 65%) and crude protein content (15% vs. 18%) for 35 days. The results showed no significant interactions between the protein content and methionine source. Strong protein reduction significantly impaired water intake, feed intake, weight gain and feed conversation ratio, but improved footpad health. DLM and MHA-FA addition had no significant effect on weight gain, crude fat and protein contents in the liver, but DLM resulted in a significant increase in livers antioxidative capacity compared to MHA-FA. Although the protein reduction resulted in reduced performance, the study showed that MHA-FA can be replaced by DLM in a 100:65 weight ratio without compromising performance but with certain advantages in the antioxidative capacity of the liver.


Sign in / Sign up

Export Citation Format

Share Document