scholarly journals Chemical Properties of Vitis Vinifera Carménère Pomace Extracts Obtained by Hot Pressurized Liquid Extraction, and Their Inhibitory Effect on Type 2 Diabetes Mellitus Related Enzymes

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 472
Author(s):  
Nils Leander Huamán-Castilla ◽  
David Campos ◽  
Diego García-Ríos ◽  
Javier Parada ◽  
Maximiliano Martínez-Cifuentes ◽  
...  

Grape pomace polyphenols inhibit Type 2 Diabetes Mellitus (T2DM)-related enzymes, reinforcing their sustainable recovery to be used as an alternative to the synthetic drug acarbose. Protic co-solvents (ethanol 15% and glycerol 15%) were evaluated in the hot pressurized liquid extraction (HPLE) of Carménère pomace at 90, 120, and 150 °C in order to obtain extracts rich in monomers and oligomers of procyanidins with high antioxidant capacities and inhibitory effects on α-amylase and α-glucosidase. The higher the HPLE temperature (from 90 °C to 150 °C) the higher the total polyphenol content (~79%, ~83%, and ~143% for water-ethanol, water-glycerol and pure water, respectively) and antioxidant capacity of the extracts (Oxygen Radical Absorbance Capacity, ORAC), increased by ~26%, 27% and 13%, while the half maximal inhibitory concentration (IC50) decreased by ~65%, 67%, and 59% for water-ethanol, water-glycerol, and pure water extracts, respectively). Water-glycerol HPLE at 150 and 120 °C recovered the highest amounts of monomers (99, 421, and 112 µg/g dw of phenolic acids, flavanols, and flavonols, respectively) and dimers of procyanidins (65 and 87 µg/g dw of B1 and B2, respectively). At 90 °C, the water-ethanol mixture extracted the highest amounts of procyanidin trimers (13 and 49 µg/g dw of C1 and B2, respectively) and procyanidin tetramers of B2 di-O-gallate (13 µg/g dw). Among the Carménère pomace extracts analyzed in this study, 1000 µg/mL of the water-ethanol extract obtained, at 90 °C, reduced differentially the α-amylase (56%) and α-glucosidase (98%) activities. At the same concentration, acarbose inhibited 56% of α-amylase and 73% of α-glucosidase activities; thus, our grape HPLE extracts can be considered a good inhibitor compared to the synthetic drug.

Author(s):  
Hanlu Fan ◽  
Haiwen Li ◽  
Huijiao Liu ◽  
Peng Li ◽  
Xiaomeng Jia ◽  
...  

Abstract Background Type 2 diabetes mellitus (T2DM) is the most common type of metabolic disorder involving multiple organ systems. Grape has been reported to improve the symptoms of T2DM, the precise mechanism of its action is unclear. Our study was aimed to determine the effect and mechanism of grape pomace extract in T2DM mice induced by high fat diet (HFD). Materials and methods Ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry were used to identify the main active compounds in grape pomace extract to improve T2DM. C57BLK/6J mice induced by HFD supplemented with or without quercetin were used to show the effects of quercetin improving T2DM. By online database research, bioinformatics analysis and molecular biology experiments, Estrogen receptor alpha (ERα)-lncSHGL (lncRNA suppressor of hepatic gluconeogenesis and lipogenesis) pathway was identify as the target for quercetin. Results Quercetin was identified as one of the most active compounds in grape pomace extract to improve T2DM. Quercetin could inhibit HFD-induced T2DM in mice by activing ERα. LncSHGL was identified as the downstream of ERα and inhibited HFD-induced T2DM. Conclusions Quercetin could be beneficial for T2DM by promoting lncSHGL transcription and activating the lncSHGL pathway, and may be used as a drug component to treat T2DM.


2015 ◽  
Vol 21 ◽  
pp. 280-281
Author(s):  
Medha Munshi ◽  
Jasvinder Gill ◽  
Jason Chao ◽  
Elena Nikonova ◽  
Andreas Stuhr ◽  
...  

2015 ◽  
Vol 21 ◽  
pp. 106
Author(s):  
Franco Grimaldi ◽  
Laura Tonutti ◽  
Claudia Cipri ◽  
Cecilia Motta ◽  
Maria Antonietta Pellegrini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document