scholarly journals Role of Natural Antioxidants on Neuroprotection and Neuroinflammation

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 608
Author(s):  
Domenico Nuzzo

All cells continuously generate reactive oxygen species (ROS) through the respiratory chain during the energy metabolism process [...]

1997 ◽  
Vol 17 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Julio F. Turrens

This mini-review describes the role of different mitochondrial components in the formation of reactive oxygen species under normal and pathological conditions and the effect of inhibitors and uncouplers on superoxide formation.


Reproduction ◽  
2020 ◽  
Vol 159 (4) ◽  
pp. 423-436 ◽  
Author(s):  
Ayelen Moreno-Irusta ◽  
Esteban M Dominguez ◽  
Clara I Marín-Briggiler ◽  
Arturo Matamoros-Volante ◽  
Ornella Lucchesi ◽  
...  

Sperm chemotaxis may facilitate the finding of the oocyte. Only capacitated spermatozoa can orient their movement by chemotaxis, which as well as capacitation, is regulated in part by the cAMP-PKA pathway. Reactive oxygen species (ROS) are produced during sperm capacitation which is closely related to chemotaxis. Then, the ROS participation in the chemotactic signaling can be expected. Here we studied the role of ROS in the chemotaxis signaling of equine spermatozoa which produce high quantities of ROS because of their energy metabolism. The level of capacitated and chemotactic spermatozoa was increased with 0.1 and 0.2 mM hydrogen peroxide (H2O2), which was involved in the chemotactic signaling. By combining a concentration gradient of H2O2 with inhibitors/chelators of some of the signaling pathway elements, we showed that the activation of NOX (membrane NADPH oxidase) increases the intracellular ROS which activate the chemotaxis AMPc-PKA pathway. Our results provide evidence about the participation of ROS in the chemotactic signaling mediated by progesterone (P).


2020 ◽  
Vol 10 (2) ◽  
pp. 184-202 ◽  
Author(s):  
Velid Unsal ◽  
Tahir Dalkiran ◽  
Mustafa Çiçek ◽  
Engin Kölükçü

Cadmium (Cd) is a significant ecotoxic heavy metal that adversely affects all biological processes of humans, animals and plants. Exposure to acute and chronic Cd damages many organs in humans and animals (e.g. lung, liver, brain, kidney, and testes). In humans, the Cd concentration at birth is zero, but because the biological half-life is long (about 30 years in humans), the concentration increases with age. The industrial developments of the last century have significantly increased the use of this metal. Especially in developing countries, this consumption is higher. Oxidative stress is the imbalance between antioxidants and oxidants. Cd increases reactive oxygen species (ROS) production and causes oxidative stress. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles. This damage has been associated with various diseases. These include cancer, hypertension, ischemia/perfusion, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, insulin resistance, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, asthma, skin diseases, chronic kidney disease, eye diseases, neurodegenerative diseases (amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, and Huntington disease). Natural antioxidants are popular drugs that are used by the majority of people and have few side effects. Natural antioxidants play an important role in reducing free radicals caused by Cd toxicity. Our goal in this review is to establish the relationship between Cd and oxidative stress and to discuss the role of natural antioxidants in reducing Cd toxicity.


2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


Sign in / Sign up

Export Citation Format

Share Document