scholarly journals Confirmation of Initial Stable Adsorption Structures of Leucine and Tyrosine Adsorbed on a Cu(110) Surface

2020 ◽  
Vol 10 (4) ◽  
pp. 1284
Author(s):  
Hangil Lee ◽  
Hyun Sung Kim

The structures and stability levels of leucine (Leu) and tyrosine (Tyr) adsorbed on a Cu(110) surface, at initial levels of coverage (less than 0.25 monolayer), were investigated using reflection–absorption infrared spectroscopy and high-resolution photoemission spectroscopy (HRPES), as well as by performing density functional theory calculations. At an initial coverage, the O–H dissociation bonded structure was indicated from the spectral results to be the most favorable structure for Leu adsorbed on the Cu(110) surface, whereas the O–H dissociated-N dative bonded structure was most favorable for adsorbed Tyr. These models were further supported by the results of experiments, in which the systems were exposed to other molecules and HRPES was used to monitor whether the amine or carboxylic groups of the adsorbed amino acids became reactive.

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Henri Brunner ◽  
Takashi Tsuno ◽  
Gábor Balázs

Our strategy to analyze the structures of natural amino acids with respect to the interaction of three different elements of chirality within the molecules was applied to the non-natural amino acid (S)-α-phenylglycine, its analogue (S)-α-phenylpropionic acid, and the drug (S)-ibuprofen. The three chirality elements are the configuration at Cα, the conformation at the Cα-C’ bond, and the distortion of the planar carboxylic group to a flat asymmetric tetrahedron. In all three compounds, a given (S) configuration at Cα predominantly induces (M) conformation at the Cα-C’ bond, which in turn preferentially distorts the carboxylic group to a tetrahedron with (R) configuration. Both steps of this chirality chain display high selectivities. Due to varying co-crystallization partners, in all the structures the molecules are in different environments with respect to packing and hydrogen bonding. Nevertheless, the structural pattern and the diaselectivities of the chirality chain persist. For phenylglycine, DFT (Density Functional Theory) calculations confirm the structural results.


Sign in / Sign up

Export Citation Format

Share Document