scholarly journals Advances in Diesel-LNG Internal Combustion Engines

2020 ◽  
Vol 10 (4) ◽  
pp. 1296 ◽  
Author(s):  
Alberto Boretti

Diesel-LNG internal combustion engines (ICEs) are the most promising light and heavy-duty truck (HDT) powering solution for a transition towards a mixed electric-hydrogen renewable energy economy. The diesel-liquid CH4 ICEs have indeed many commonalities with diesel-liquid H2 ICEs, in the infrastructure, on-board fuel storage, and injection technology, despite the fact H2 needs a much lower temperature. The paper outlines the advantages of dual fuel (2F) diesel-LNG ICEs developed adopting two high-pressure (HP) injectors per cylinder, one for the diesel and one for the LNG, plus super-turbocharging. The diesel-LNG ICEs provide high fuel energy conversion efficiencies, and reduced CO2, PM, and NOx emissions. Super-turbocharging permits the shaping of the torque curve while improving acceleration transients. Diesel-LNG ICEs may also clean up the air of background pollution in many polluted areas in the world. Computational results prove the steady-state advantages of the proposed novel design. While the baseline diesel model is a validated model, the 2F LNG model is not. The perfect alignment of the diesel and diesel-LNG ICE performances proven by Westport makes however the proposed results trustworthy.

Polar Record ◽  
1955 ◽  
Vol 7 (50) ◽  
pp. 370-379
Author(s):  
E. S. Sellers

Internal combustion engines, in common with all heat engines, derive their capacity for work from a cycle of operations which comprises the supply of heat at a high temperature followed by the rejection of heat at a much lower temperature. The difference between the two quantities of heat represents the maximum amount of energy which can be converted into useful work. In the familiar piston-type internal combustion engine, the heat supply is maintained by burning a suitable fuel in air, and heat is rejected largely in the exhaust gases. With heat engines in general, it is true that the higher the temperature of the heat supply, the greater the efficiency of the engine. There are, however, limitations to the temperature at which an engine can operate. These are imposed by the properties of the materials used in its construction, and by the necessity of maintaining satisfactory lubrication in all circumstances.


2008 ◽  
Author(s):  
Alan Welch ◽  
David Mumford ◽  
Sandeep Munshi ◽  
James Holbery ◽  
Brad Boyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document