Challenges in Developing Hydrogen Direct Injection Technology for Internal Combustion Engines

Author(s):  
Alan Welch ◽  
David Mumford ◽  
Sandeep Munshi ◽  
James Holbery ◽  
Brad Boyer ◽  
...  
MTZ worldwide ◽  
2021 ◽  
Vol 82 (7-8) ◽  
pp. 42-45
Author(s):  
Bernhard Bobusch ◽  
Thomas Ebert ◽  
Anja Fink ◽  
Oliver Nett

1980 ◽  
Vol 194 (1) ◽  
pp. 157-169
Author(s):  
L. C. Hall ◽  
M. E. Saatci

This paper reports on a study into the feasibility of generating steam, using the exhaust gases of a reciprocating internal combustion engine, and expanding it in the cylinders of the engine to produce additional power without increasing the fuel consumption. The study was conducted in three stages; firstly an equivalent ideal thermodynamic cycle was analysed to examine the fundamental principles, secondly a computer simulation was carried out based on a particular engine, and thirdly an attempt was made to modify the engine and run it with steam injection. The results suggest that this proposal is thermodynamically sound and could in practice permit substantial gains in efficiency using relatively straightforward technology.


2021 ◽  
Author(s):  
Zhiyu Han

Simulation and Optimization of Internal Combustion Engines provides the fundamentals and up-to-date progress in multidimensional simulation and optimization of internal combustion engines. While it is impossible to include all the models in a single book, this book intends to introduce the pioneer and/or the often-used models and the physics behind them providing readers with ready-to-use knowledge. Key issues, useful modeling methodology and techniques, as well as instructive results, are discussed through examples. Readers will understand the fundamentals of these examples and be inspired to explore new ideas and means for better solutions in their studies and work. Topics include combustion basis of IC engines, mathematical descriptions of reactive flow with sprays, engine in-cylinder turbulence, fuel sprays, combustions and pollutant emissions, optimization of direct-injection gasoline engines, and optimization of diesel and alternative fuel engines.


2019 ◽  
Vol 9 (22) ◽  
pp. 4842 ◽  
Author(s):  
Ho Lung Yip ◽  
Aleš Srna ◽  
Anthony Chun Yin Yuen ◽  
Sanghoon Kook ◽  
Robert A. Taylor ◽  
...  

A paradigm shift towards the utilization of carbon-neutral and low emission fuels is necessary in the internal combustion engine industry to fulfil the carbon emission goals and future legislation requirements in many countries. Hydrogen as an energy carrier and main fuel is a promising option due to its carbon-free content, wide flammability limits and fast flame speeds. For spark-ignited internal combustion engines, utilizing hydrogen direct injection has been proven to achieve high engine power output and efficiency with low emissions. This review provides an overview of the current development and understanding of hydrogen use in internal combustion engines that are usually spark ignited, under various engine operation modes and strategies. This paper then proceeds to outline the gaps in current knowledge, along with better potential strategies and technologies that could be adopted for hydrogen direct injection in the context of compression-ignition engine applications—topics that have not yet been extensively explored to date with hydrogen but have shown advantages with compressed natural gas.


Author(s):  
Bijan Yadollahi ◽  
Masoud Boroomand

Due to the vast resources of natural gas (NG), it has emerged as an alternative fuel for SI internal combustion engines in recent years. The need to have better fuel economy and less emission especially that of greenhouse gases has resulted in development of NG fueled engines. Direct injection of natural gas into the cylinder of SI internal combustion engines has shown great potential for improvement of performance and reduction of engine emissions especially CO2 and PM. Direct injection of NG into the cylinder of SI engines is rather new thus the flow field phenomena and suitable configuration of injector and combustion chamber geometry has not been investigated completely. In this study a numerical model has been developed in AVL FIRE software to perform investigation of direct natural gas injection into the cylinder of spark ignition internal combustion engines. In this regard, two main parts have been taken into consideration aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multidimensional numerical simulation of transient injection process, mixing and flow field have been performed via different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability, the validated model has been applied to methane injection into the cylinder of a direct injection engine. Five different piston head shapes have been taken into consideration in investigations. An inwardly opening multi-hole injector has been adapted to all cases. The injector location has been set to be centrally mounted. The effects of combustion chamber geometry have been studied on mixing of air-fuel inside cylinder via quantitative and qualitative representation of results. Based on the results, suitable geometrical configuration for a NG DI engine has been discussed.


Sign in / Sign up

Export Citation Format

Share Document