scholarly journals Multiple Current Reversals Using Superimposed Driven Lattices

2020 ◽  
Vol 10 (4) ◽  
pp. 1357
Author(s):  
Aritra K. Mukhopadhyay ◽  
Peter Schmelcher

We demonstrate that directed transport of particles in a two dimensional driven lattice can be dynamically reversed multiple times by superimposing additional spatially localized lattices on top of a background lattice. The timescales of such current reversals can be flexibly controlled by adjusting the spatial locations of the superimposed lattices. The key principle behind the current reversals is the conversion of the particle dynamics from chaotic to ballistic, which allow the particles to explore regions of the underlying phase space which are inaccessible otherwise. Our results can be experimentally realized using cold atoms in driven optical lattices and allow for the control of transport of atomic ensembles in such setups.

2008 ◽  
Vol 28 (2) ◽  
pp. 211-218
Author(s):  
陆俊发 Lu Junfa ◽  
纪宪明 Ji Xianming ◽  
周琦 Zhou Qi ◽  
印建平 Yin Jianping

2008 ◽  
Vol 35 (7) ◽  
pp. 1017-1023
Author(s):  
陆俊发 Lu Junfa ◽  
纪宪明 Ji Xianming ◽  
印建平 Yin Jianping

2004 ◽  
Vol 18 (09) ◽  
pp. 1235-1260 ◽  
Author(s):  
ANDREY R. KOLOVSKY ◽  
HANS JÜRGEN KORSCH

This work is devoted to Bloch oscillations (BO) of cold neutral atoms in optical lattices. After a general introduction to the phenomenon of BO and its realization in optical lattices, we study different extentions of this problem, which account for recent developments in this field. These are two-dimensional BO, decoherence of BO, and BO in correlated systems. Although these problems are discussed in relation to the system of cold atoms in optical lattices, many of the results are of general validity and can be well applied to other systems showing the phenomenon of BO.


1999 ◽  
Vol 62 (4) ◽  
pp. 367-388 ◽  
Author(s):  
M. L. BÉGUÉ ◽  
A. GHIZZO ◽  
P. BERTRAND ◽  
E. SONNENDRÜCKER ◽  
O. COULAUD

A semi-Lagrangian two-dimensional fully relativistic Vlasov code for multicomputer environments is developed to study trapped-particle dynamics in phase space induced by relativistic modulational and Raman instabilities. Attention is focused on the efficiency properties of the numerical scheme, which allows a very fine description of particle dynamics in phase space. Vlasov simulations show the appearance of coherent vortex structures as a result of the nonlinear saturation mechanism of the relativistic modulational instability. Growth rates are computed and found to be in good agreement with theoretical values obtained from the dispersion relation by Quesnel et al, [Phys. Plasmas4, 3358–3368 (1997)] and Guérin et al. [Phys. Plasmas2, 2807–2814 (1995)]. In the case of coupling between the relativistic modulational instability and two-plasmon decay, stochastic behaviour can be observed due to the competition between different plasmas waves.


1995 ◽  
Vol 09 (04n05) ◽  
pp. 563-583 ◽  
Author(s):  
E. LASERRA ◽  
M. STRIANESE ◽  
I.P. PAVLOTSKY

The so-called no-interaction theorem of D.G. Currie, T.F. Jordan, E.C. Sudarshan, H. Leutwyler, G. Marmo and N. Mukunda makes it possible to construct relativistic quasiclassical particle dynamics in the post-Galilean approximation only. It is obtained that in this approximation the Lagrangians are singular on some surfaces of the phase space. These peculiarities have different physical and mathematical nature from the ones studied by P.M.A. Dirac, where Hessians vanish in the whole phase-space. The dynamical properties are essentially peculiar on the studied singular surfaces. These properties, in our opinion, can be related with some physical phenomena. In the present paper the general situation is first described. As the whole problem is large and difficult we examined in detail just typical one- and two-dimensional models in the second part of the paper.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


Sign in / Sign up

Export Citation Format

Share Document